{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#
Capacité numérique 1
\n", "\n", "#
Les méthodes d'Euler
\n", "##
Application au filtrage passe-bas
\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## I- Méthode d'Euler." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A - Méthode d'Euler explicite" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les méthodes d'Euler sont des procédures algorithmiques de résolution des problèmes de Cauchy, lorsque l'équation différentielle est d'ordre 1. \n", "\n", "Ces méthodes permettent de réaliser facilement un code numérique afin de trouver une solution approchée du problème. La précision de la solution étant fonction unique paramètre. \\\n", "On distingue deux types de méthode d'Euler : \n", "- la méthode explicite\n", "- la méthode implicite\\\n", "On expose le principe des méthodes d'Euler explicite et implicite, puis on appliquera ces méthodes à la résolution d'un problème de Cauchy décrivant l'évolution de la tension aux bornes d'un condensateur. Ces soltuions seront comparées à la solution réelle et à un traitement harmonique. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Considérons le problème suivant : \n", "$$\\left\\{\\begin{eqnarray}\n", " y'(t) & = & f(t,y(t)) \\\\\n", " y(t=0) & = & y_0\n", "\\end{eqnarray}\\right.$$\n", "\n", "Les méthodes d'Euler ne permettront pas d'obtenir l'expression de $y(t)$ mais d'avoir une approximation du graphe de cette fonction sur un intervalle $[0,T]$.\n", "\n", "Commençons en tout premier lieu par intégrer $y'(t)$ : \n", "$$ y(t) = \\int f(t,y(t)dt $$\n", "\n", "Pour calculer cette intégrale on subdivise l'intervalle $[0,T]$ en $N$ sous intervalles : $[t_0,t_1]$ ; $[t_1,t_2]$ ; ... ; $[t_{N-1},t_N]$.\\\n", "Avec $t_0 = 0$ et $t_N = T$. On ferra également attention à ce que $t_{k+1} - t_k = h$ soit une constante. \n", "\n", "Vient alors que : \n", "$$ y(t_{k+1}) - y(t_k) = \\int_{t_{k}}^{t_{k+1}}f(t,y(t))dt$$\n", "\n", "La méthode **d'Euler explicite** revient à utiliser la méthode des rectangles à gauche pour estimer cette intégrale. Détaillons : " ] }, { "attachments": { "Euler_exp.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAADxCAYAAADMS9xFAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzt3Xl4XHXZxvHvM9napvtOKQKliKACytYiS9lElIIFCnRDsFCQHRRRRKAWkFUoKHSRtUkKhK0U2XdBZCkKqLxQtkI3utEtadIk87x/nDNlSCdp2s7MmWTuz3XlSuacmfk9kyu55zfP2czdkU1nZrsAI4AdgS2Ao9x9brRViYg0rTDqAlozMzNgOnAY8AVwM1AcaVEiIhtgmvFvOjP7NvAfoIu7r4y6HhGRlohFXUBrZWZ9gT3Cm9uY2QAzK4iyJhGRlsj74DezTW137cpXwX8QcDBQkpaiREQyKO9bPWY2Hhjv7vFNeOyRwMNAD3dflvbiREQyIK9n/GbWHjgH2C/qWkREsiWvgx8YBnQBxkRdiIhItuR78CcC/xgz6xBpJSIiWZK3wW9mvQk2yAJ0BoZuytM0+i4ikvPyNviBUXz9ALZNafd8N/y+0+aXIyKSHXm7V4+ZvQV8A1gL1BOcbqG/u3/RwsfvDOwQ3nTgHXf/IBO1ioikU14Gf9jmOQi4B/iMoOXTCWjv7n+PsjYRkUzLy+BPZmafAwe7+/tR1yIikg353OMXEclLCn4RkTyj4BcRyTMKfhGRPKPgFxHJMwp+EZE8o+AXEckzCn4RkTyj4BcRyTMKfhGRPKPgFxHJMwp+EZE8o+AXEckzCn4RkTyj4BcRyTMKfhGRPKPgFxHJMwp+EZE8o+AXEckzCn4RkTyj4BcRyTMKfhGRPKPgFxHJMwp+EZE8o+AXEckzCn4RkTyj4BcRyTMKfhGRPKPgFxHJMwp+EZE8o+AXEckzhVEXICIimVdp1qsWLjeoUfCLiOSBOjjCYBwwT60eEZE2rszsBIcpAAbXK/hFRNqwcrOfGdwBxBzGj3S/QcEvItJGlZudAtxOsCPPzaPdLwPt1SMi0iaVmZ0JTCbI+RtHwTmJdQp+EZE2ZprZgQY3AWZw5Sj383D3xHoFv4hIG3K7WacY3AYYcMtI9981vo+CX0SkDSmBa4FtgE+K4cJU91Hwi4i0EeVmPyTYVz8eg5OGu69OdT8Fv4hIG1BhtidwP0GL588j3F9s6r46cldEpJUrN/su8BjQCXimrokWT4Jm/CIirViF2a4OzwI9HF6ugiNPdK9p7jGa8YuItFLTzQY7PGbQFXijBA4f7V69ocdpxi8i0gpNN9s/Dk8RhP5LwMHD3Ve05LEKfhGRVmaa2V5xmAl0BJ6ogsNGua9s6ePV6hERaUXKzb4b+/qG3GHjNtDTb0wzfhGRViJpQ273lm7ITUUzfhGRVqDRhtzXWrohNxXN+EVEclyF2fFJG3JfqIVDWrohNxXN+EVEctSdZn2L4BZgGIDDYyVwzCj3NZvzvJrxi4jkoAqz44vgP8Awh1rg4v5w5PDNDH3QjF9EJOdUmF3qcFl4c5bDiaPd/5Ou51fwi4jkCjMrhxuBswEMJvSDPwxxr0/nMAp+EZEcUQ5XEoS+O5w3yn1iJsZR8IuI5IAKs/OA3wBucMoo99syNZaCX0QkYuVmo4HrAAx+OzKDoQ/aq0dEJFIVZkcCdxDk8fUj3a/O9JgKfhGRiJSZneBQCRQa3D0KLsjGuGr1iIhk2XSzng6XGpxBcKnE24tgHO6ejfEV/CIiWVJm9v0w7EcA7cPFl4+CS7IV+qDgFxHJuOlmfRrgRoPjkxa/bnDBSPeXsl2Pgl9EJIOmmW0bg2cMBgD1wD1x+PMY99eiqknBLyKSIdPNesbgSWCAwQcNcPSYNJ56YVMp+EVEMuB2s04l8CiwPfCxwX5j3L+Iui7Q7pwiImlXYXZACbwC7AUscfjxiBwJfdCMX0QkbcK9dm4A9gsXzTUYOsr9/SjrakzBLyItdrtZp3awN7CFQ28Dc1hlwfniVzqsAYoMOhLurhiHpQavjXKfG2XtmVZuNsjgaYLXvsZhksNVY9wXRV1bYwp+EdmgSrP2dfDLErjQg2ADwBt9b7wcgqOTgHiF2e1FcNFw98WVZgXDIZ7NfdczodKsC8Aa6FgA9xH8bv5WByef6L4w2uqaZq38977ZzOxz4GDPsY9iIlEbbxYbCIOBEQ7HGvQKV70PzAYWAaUE2wrbA+2AzkAdUAWsIMj9/sCerL9N8Y04/GaM+3MZfzFpdrNZSQ+4x+GnjVb9txgGDXdfHUlhLaTgV/CLfE2F2Z5xGGdwONAnadXHwIWj3O/f2OecbjY4DtcCP2i8zuEdg78DbznM6g//TfeFR9KpwmyAw0SC308DUABg8FwMTjze/fNIC2wBBb+CXwSAe8y+1xBc/Wm/pMUrgIccKkrgueHuDZszxp1m7Uqgo0H7BjgfOJmk1lGoBngbeD0Od49xf3NzxkyXu822LICLgbFAEbAmBj+shTdLoTDXZ/nJFPwKfslzd5v1iMGVFoRwjGAD7XSHadXwyjj3ukyNfadZ12I4JA67GexG8NWt0d0ej8MZY9w/yVQdzQkD/1fAqXx1fp1HgYtGub8bRU2bS8Gv4Jc8VmY2xKAM2JJgm2x5AVx4vPv8qGqqMBsA7ObwI2AkwbaDaoILldxrwScCAOqhsBA6GcwZ4b5kc8a92aykG2xVCPU1sDwGvQvgPIeTDEoAHF4ELhrt/o/NGStqCn4Fv+ShSrOCtXAJ8DuCHvV/HcblWqCVmQ00mAQctIG7/q8K9hjnXr2xY0wzK43BeIIZfeO2EwAGTzcEu2a2ug3RqSj4FfySZ6ab9XGocDgwXDS1GM4Z7r4m0sKaUWF2VBzGGhxMcMxAYuNvIdAp/HkN8B7BdonOicc6dLXg08wKAIMVDvFwdSnwTaBHeHsFQf++QzjGAw7XjHZ/K2MvLgIKfgW/5AEzOxA4tAz+CfwZ6Edw4NW4ke73RFvdpnvBrHAe/J6gJTRwU5/H4APg7JHuTwJUmhUPd1+bpjJzjoJfwS95YB+zP34Jp1/01Uz4Pw7HjG5Df/dlZgOBbWPQFcBhhUHcoCYObsGG2WKCWT4ABjUNMO8j+Pel7vEmnrrN0ZG7Im1cudmvd4UL/xEcTPWlwcTVcO2m9MNz2Wj3D4EPo66jNVDwi7RhFWYXAxMMWAYfF8P3h7uviLouiZaCX6SNKjc7C5gA8ClMmwPdFPoCOh+/SJsUhv5EAIPLHoW/RVyS5BAFv0gbU2Z2KkHoG3DtSPfxxcXt9b8u6+iPQaQNKTM71eBWwtAf5f7r6yayc7+t9ui8ocdK/lDwi7QR5WZnJULf4MpR7hdecwO71zewY9S1SW7Rxl2RNiCpp2/AFbMv80v+eCODzPlGxKVJDtKMX6SVa9TTv6b4Pr+0XUf2sbhCX1LTjF+kFWvU07+marJfPOdzhsSMnlHXJrlLwS/SSjUO/Q8v80tLqjggtv757EW+RsEv0gqtF/qTfXzxag7E152pUqRJCn6RVqZx6M+72i9vt5KDPEaHqGuT1kHBL9KKhLtsTiTYZXPCZ3/0G6yIA91pF3Vt0noo+EVaiQqzE0kK/U+v8L9YEQfgFEVcmrQyCn6RHHa7Wadi+F0MihzOJTwid+5NPqVwLfvGjYKoa5TWR8EvkqPuNGtXDDMN9k9cLslg4tyra27zevZ2wyItUFotBb9IDrrZrKQbPGCwf7ionljsss+ubXgM2JX8vnCebCYFv0iOqTQr7gaVBj8OF82ub9/tpIUTlhnBhcFFNotO2SCSQ6aYFa2FewyGAtUOp9QcetmgBVcsK3Vjy6jrk7ZBM36RHDHFrKgUyoFhwBrgiI+u87fbOfui3TUljRT8IhGrNCuogyNLYTzwHaDGYNjH1/inJcYBbvpkLuml4BeJyBSzDqVwJnA6sHW4eEFDSeex8y5fsbIwxu4RlidtmGYSIhEoNzusFGYDVxOE/iKDCSuPvmWfeVeuMIvplMqSOZrxi2RRpVnxWrgSOJ/gYKzZBhOWDzn9oZWH/2UHjD20c75kmoJfJEsqzLZ2qAT2ANzhhhL4zQfXe59C4yBtwJVs+Vrwm1kvoDsw293jjdaZu6c8bMTM2gO1jR+TLps6dqrHNfdcIplSYfZjh2kE/19LHE6cf7W/ZEUMLnD66i9Ssmldj9/MriDYjWwy8G8zi4XLO5nZb2D9K/qY2U5mNg1YCnRNd3Fm1jkcu0eKdd82s7Jw7C5NPMWxZjak0bIeZvZrM9N5yyXjppgVlZtd4/AoQej/09p13f2za31OvJAfNTh9o65R8k8i3HcHfuzuU4BjgMnuHjezUoI3gr+6++LwvgVmNgDA3f8HzADap7swM+sITAKmuvuSFGP/F3iiubHd/V5gsJkdkLRsCXA7cJOZlaS7bpGEe822K4VXgAvCRTctHDdz6NzLv/xmLMa30c4VEpFEq+dHQDWsC8a/hMsnAWWJ4A2NB94HPg5v12SotknA3e6+NGnZH4D/JY29ogXPcx3wspkd6e4LIXiNZvYYcG06CxZJqDAb7jCF4JPwcoNxH1/jbxUWsD/atiYRi5nZMcDeBC2Q4WZ2CICZDQb2Ax5P3NnMzgIuAvY0s+GNn8zMisxsiJkdHH6t1/4xsx8krR8YLusf3t4jvL038AN3fyLpcWcDv93A2AckPXcXAHevI/hUcnmjhzwEHAs6l7mkT6VZl3KzaQ73EYT+C6t3PGTPz27wxYUF7I5CX3JAjGD2XA3Uhz/PC9eNA/6R2BBqZgZ8RrAL2krgy8ZPFobs3sARwL/cfXmKMZcADwOnuvuH4ePmEryhrE4eO/GAjRz7cOAtd0/+NPAKMMrMOifdvx54AyhN/asR2TjTzfZfC28Do4F6h0vmT/ji5GVjn/oucfpEXZ9IQszd3wIWA1XuPivs20NwOtgFiTuGbwAvhjffcfdnGj9ZOCtf4O5nN2rRrOPu7xNcL/TAcBsCZtYBmO/u77Vg7HebGPscYJ67n+vuyxqt/j+gHcEbQ+Pl6vPLZpliVlRmdlkcniU4GOuTeI+tD513nT/f0KH37mb6VCm5pbmNS1sCC5tYl2rnsxuBYne/owXj3gh0BE4Kbx8JPADrZvcbO/ZEoMDd72ziMSvD79s0Wr4CffSWzTDN7MBSeMvgUqDAYcrcM14eOve3n3bV2TQlVzUXeg5NXuEnVfgWA78ys+nuPi/F+q8e7D7PzMqBc83sVuBQgvbO5ox9gZnd4+7zU6yvD783nnnVN76jSHMqzdrXwOAYHAAMjcEu4aov1m6153kLzn1tUQy+o6NvJZc1F/xzgc5NrEsVvucBM4H7zOwgd9/Q3j7XAj8jCPzF7r4WgraOmW3K2I8mjV3baH2ivzo3xfKGDdQpeexOs3YlsFc8aD8eAAyK8bUjbKvinbeYtvDUJ2Y09N25SyzF8S4iuaYw6XvjizY/z/pX+6kmCMpuAGZWnLSuFhgOzALuMrMRiaNpzawfQcjfnfg04O7vmdlMgrbPni0cO97E2DVJY99pZiMbHZ27RVj3q42esx+wFpFQeIrkAxyGAPsVwp7x9bcDfW7wfG2/Xd5YNqbio7reO3Wm6YMI06rWqgqKaBePeYGO9ZVNVhjuUjkY6G9mewL/DmfftwIzzCyWCHB3X2tmbwK/NbPtgenAQeFzHUgw674cuB5YbWYXu/sCYATBiakGEfTzE/4EbOXubzeqaxLwQPLpFdy9Nhz7onDse1KMfQXBJ4mqcOzEdoJBwMyk2wl7AVUAZrYFwT97Y/XuXhneZzipPyW94O4LzGwvYECK9R+5++vhG+D+KdbXufv94RjHsv6bMMDz7r4w3M12mxTrP3T3N8ysP7BvivW17v5gOMbxpG6lPevui8zsB5Dy7JAfuPssM9sK2CfF+hp3fygcY0SK9QDPuPtiM9sH2CrF+vfd/S0z25r1N8YDVLv7jPDI8uMar+wK7Q+FV4+A2kmw3zzoWgd1VVC7AtY0BJOH/3P3f5nZNsDgdlC4A2w9EAb3hL1LoGvyx8B6WLYK3lta1O79+aV956zpvV1dx459uxUWtv8mz9+QtUshrtpmQfc5h790cNf/bvu//s/v+Z+NeezSJR92QNuzJFRIMFP5WdKyUmBt+M/3NPBDgiNkEw4DvkewK2RXoCz8guAo2mdg3XnEE7tK/gV4Czil0fidCI6i/Rp3f9PMngcOAZ5KWvWjcOzXCWb+08KvxNhPEXxagGDjcWJj8QhgbPIY4fEKbxC8KUDwqeD4xrUQfJKpDH8+BlKeSOsDgr2QBhG8CTX2TFjzlk2MUQ3cH/7c1LEF7xFs8B5M6jePJwleT/8mxlgJPBj+fBypN+y/CywiCNxUwf4YwaeqbzQxxnLgofB3nmo9BLs7Lg6ff3CK9TMJ/la2buI5lgIzJkL/y+Cs9tC5HXRsB52KoGMBFO9O0A/sS/iuDvT66vH+PaguM6v+LbR7Mvg7MYBPwq8FUB+H5QWFJQtqSjquqSsoqS+IFRbFCgp3AXZh6ScsW/pJEy8v/bwAW/PTZX1qD13Rj0K3Rbu/22vNY8t6FcwvbtzSbFJN9fIigt+7CNbc+crC89n8GTjD3Vc3eceWDGR2HPCpu7+WtKwcOM3dVzUz9unuXtV4/UaMey7BLqb3Ji3rDEwFTiUIu4PD3Uwll5jZdBgUh6MJPsUUE8zYtyE4701T4sAKh3oLJjcd2fCBeksIdscsOwFGxOHFq2/wv8fj7LzZr2MzzOp8V/8ne15w2urY4oHJy79VdcRdJyyY8XhTj2ts8i37d/30o5cOd/eh6a9SWptmP/q5+yozOx84z8xubuKArA0Kj+D9IPx4fQrBzH8B8Gqq0G809vmbOnbYNvnA3R9LWtYD+AXBG87yYHIq2VJh1g0YA+zqQXgHG/WD71UWXGC81oJPg4eTuuUEwR5Zs4H/OPzP4L0YvLcE3j9r/Y37id595xi0j0O7OHSKwaq1UF0E1aPcE7v8MjpohUWq1qoKpvc7+iez2z093C2+7k2ryDss32PFKVMPX3LjrCjrk9Ztgz0/d19qZpeTuu/cImFo/yu8OY/gCN13Cc6jk8mxHwqP6E220t0bn75BNtJ0s2857BqHLrGkM7M6VFvQHiOcca+KQzwWzMB3AC4Bejd+PmviZ2CFwYw4PBILz80Uh8Ul8N7wcE+wlhju3kBwxPd6R33nmqZm+T3rtv/nyAX3/7Xv2p0369O3SIs29oQbWNOyz3s4+35sg3dMw9gpQj/lMkkS9N+2NOjZAPVFsGxx0FenO2xHsJ1jOMFFwTHW37/WG/2c4j7vAtMtfF6AOHSMQZFDF4dYDNY6vL4Mnk41g2+LNMuXbNFWflmnzOxYC/aMGugEW38baLKZXmPwD4elDg2W+lNZZ4LlJQbtPQj6mVUwZZzegL9mVue7+j/Z44JfrC5YvF3ycs3yJRMU/HlqmtmOMTgT+AlBxtcaJFoLawg2dhYT5H5R0vKnCfZyemRkUl9cNk3zs/xTpx6+5E+a5UvaKfjzTIVZN4fLY3Aa6+/Sudrg6rVw3YlJR16Xm3WOQ8OYzdi7StbX3Cx/1MIHp/ap/Y5+35IRCv42qtKsYG1wKc0BFuxfjwdHQ59McOyGA5UOtxhUxaAkDu+kmsWP0sw+rTTLl6gp+Nug8Wax7eAhg6GQ8uRGb8Xg/BHuL66/SjJJs3zJBQr+Nmaa2YEDYQLB0bdVBvd5eBQzsMzgkZHwOM0duSdpp1m+5BIFfxtQaVZQC6MMzovBruHiVQbDR7o/GWlxolm+5BwFfytXZvZ9g7ss3K+e4OC422Nw5Qj3L6KsLd/lyiz/pa7XfHPp8A8GclU2RpPWQMHfipWbHWbByd06AEscrqmHqSdu4qk1JH1yYZYftwYr63vUj94vfXSU94gbu/PPTI8prYOCv5UqN9uDYH/6DsAjdfAzBX70mpnlf7nHilP/mq1Z/oLCf3cq33LY6cuKPv0eAAZ2OrvaC1boQ1xXnstzCv5WKDz4aibBaa//tiUcPcT1zxy1XJjlA7zcdeJ2z3a/+Jza2Op150Sy2oIv47c0/M/f0N+JKPhblUqz9rUwLga/B3oYvNkAxyn0o9XULL8k3nHJ3ivOnnzI0ivezUYdSa2d0U583Sk0utdvO6vdn7pXzHtz1gHZqENyn4K/lagwO97hBguuLwLwCjBUR9NGa1bnu/o/0eOC06sKFidfec23qN3lueMXVpb1qtt+TTbqWK+1AxjWsE3N/g+NnffkA1MXH5KVS0NK66DgbwXKg2sYTAbM4SODCcVQFp5qWCLQ7Cz/y3MnH/LlhKzM8gFe7nzjwGd7/v7s5NZOUbx06UHLLpm43/Jff5CtOqT1UPDnuAqzcQTXIDbg2v5wkVo70ZrV5Y6tnuh+4S9SzfJHLXygrHvddlmZ5Tfd2hkwa/T8h27VGT2lKQr+HDbN7DsxuAUwgz+NdP911DXls1ya5S8o/Henaf1/evrywjkpWjvPPBDzAh2ZLU1S8OewGPyS4Hz29490/2XU9eSzXJnlw7rWzjm1sdXrriFf7KVLDlx6yU1q7UhLKPhz0M1mJT3gCIcRBsTh6qhryle5NMtXa0fSRcGfY8rMjugOt3uwuyYGD4xxfzPquvLRIz3P3f7t0ooJuTDLn1syq1PFFkev19rZfs0P7z1h/t9mqrUjG0PBn0PKzHYB7gNKgM8c/loH10ZcVv4pwriAQ1/tfNPhjhcnFkcxy4fmWjuX3bTf8l+ptSMbTcGfI14wKzQoIwj9Bz+E4Ze6x6OuKx/ZVQxhIP38qysZeL+1uz4zcsH9Fdmc5au1I5mi4M8R84IrY30HWNQA4xT60fGnmW0D6QfRzfLV2pFMUvDngGlmpTG4LLw5/gT3pVHWk/eeYC4/5vXO/ft+Om7uy49nc5YPau1I5in4c4DB+UAfYHYVTI26HgE/l9svun7BS/E4O2drzOZaO2MWzLhFF2yRdFHwR2ya2bYx+A2Awe/GuddFXZMA8VSXKs6cuSWzOlX0PfqM5UVzEldQU2tHMkbBH6EpZkWlcBfBOfWfGeleGXVNkn3Pd718xxe6//Gsulh198QytXYkkxT8ESk3O6sDHA3sCywvhNOirkmyq8nWTt2AN8csnHGrWjuSKQr+CEw360lwiuUCIB6DE45z/yjquiR71NqRKCn4IxCHEQShvxY4b4T7zIhLkixqqrVz0JLxE/dd8cvZUdYm+UHBH42fAzj8crT7LVEXI9mh1o7kCgV/lpWZfd9gV6AmBuVR1yPZkbq1E2vYfs0hau1I1in4sywGJ4X/4Q+OdP8y2mokG1K1dkriHZccuPQytXYkEgr+LKo0K3Y4HsDgjqjrkcxSa0dylYI/i+rgSKAnMGc2PBd1PZI54bl2zlxeOGeXxDLzWN0O1YdXjF744BPZbu148VdvPCIK/ixaCo/0CPboKdJJ2Nqu57tevuMLPf54dp1Vd0ssi6q1U12wtOjOfoeN+uJX7/bnZOZkc2zJXQr+LDrLvRa4J+o6JDOaae28MWbhjEnZbu38X8fHej7Y86RzVxcuGkgJMFb/7xLQH4JIGnze7o3O0/sOPyNXWjsP9j5t8L863T6uwerar6tnV/rYC1boQ7w+m7VI7lHwi2ym57pN2OnF7ledlUutnbklb/woeXnJZ53+XvOrVau8RqEvCn6RTZZrrZ33Ojza66HeY89ZXbhoYGJZgRet+d6qE6csvvH99z6tfenwbNYjuUvBL7IJmmvtnLBgxuPZrmdGrzP3eLPLlNMaqCtNLOtQ3/OToxZNuXGn6mFfTGb/rtmuSXKXgl9kIzXV2jnoy/E37vPl+R9ms5amWjtb1O7y7Nj5z97ZoaGHru8g61Hwi7TQV62dmaMd/3prZ/7MSX3qdsp+a6fvz89ZHVvcqLXz8ylHLZr0ajZrkdZFwS/SAq2htVMa7/nxsIVTJu5UPeyLbNcjrYuCX2QDWktr5+R5z9/RPt5Ne+3IBin4RZrQULDW7triiCNmt3/qeMdjieU96rZ7Y/T8R7Le2nm3U2XfGb1OO7c6tmybxDK1dmRTKPhFUtmWThO26jW5JrZyn8SiSFs7vc/c883OU05Va0fSQcEv0tg+9LGzubgmtnLdLpAl8Y6LD/py/MTst3YWFd3Z73C1diStFPwiSQwzG8GulLAu9Hut3eHV0QtmTulVt/2abNbyTsd7t3ik9+nnNG7t7Lby55N/unjSP7NZi7QtCn6RJI67XWMv23UcYsVWtEPV0Om51No5avHUG3dc9dNF2a5H2hYFv0hjc6jySm7b68hxLx65cFJRNodWa0eyQcEvksp9/HfY4EnvxWHnbA2p1o5ki4JfJAeErZ3TGqjrkFhW2tDr46OWTFFrR9JOwS8SoSZaO96/do8nT5r3ZJlaO5IJCn6RiLzT8d4tZvQ6/dw1Bcu2TiwroKh6txU/n6LWjmSSgl8kAjN6nbHXm12mnqrWjkRBwS+SRWrtSC5Q8ItkSVOtnd1XjJ185OJbX4uyNskvCn6RLFBrR3KJgl8kg9TakVyk4BfJkLc73tPvkV5nnKPWjuQaBb9IBlT2OWnftzuVjY1T3y6xrLSh18dHLbrtxh2rhma1tTOn3StdVw6Z+00+yuaokssU/CJplGutnYd7nTborc53jm3Yoq6Ax/lHNseW3KXgF0mTtzve0++R3mecuya27BuJZVG1dj5r/2qXyl4njF1a/OGeYSHY2Xw3mzVI7lLwi6RBqtZOx4ZeHw1bdNvEbLd2ErP8eqvtlFhm9VYT/5d/YZg57tmsR3KPgl9kM+RSa2e9WX6oa91W7xRP6XbPF0+9s7ffo9AXBb/IJmu6tXPK5CMX/yWrrZ2He502aFaXO8Y2sHbdLL/Ai9bsVD2s7LiFFc9N/ejALtmsR3Kbgl9kE+RKa+ez9q92qew95uSlRR/tkby8a91W7wxbNHXK9msOXZKtWqT1UPCLbIRcau1saJYf8wK1dSQlBb9IC6Vu7RSvGrT8zFt+suT6f2WrDs3yZXMp+EVaoLLPifu+3ak88taOZvmSDgp+kWbkSmunyVl+/VZvH7X4r1OqwrGJAAAEw0lEQVQGVv1waTbqkLZBwS/ShCe6/WbAa12mXhF1a0ezfEk3Bb9IKr9g0Itdrz3eLd4+sSjbrZ057V7pen+fn43VLF/STcEvksQws0sYxG5s58QTi33rmr1nnjjvqXtLvLQhG3Voli+ZpOAXSeK4x1ZZTeJ2tls7c9q90rWyzwljlxV9rFm+ZIyCX6QR/zNv23cpLu5eWnPcwulTs9XaSTnLp6h6p6ph5ZrlSzop+EUaq8P9Um797UUfPV1S3efbmR5Os3zJNgW/SCqfU9W+pk9DfMP33Cya5UsUFPwiEdAsX1rCzLq5+5fpfl4Fv0iWaZYvLWFmI4Ei4K50P7eCXyRLmp7lb/32UYunaJYv65jZgcBU4FIzG+DuH6fz+RX8IlnwcK/TBs3qfMfJDba2Y2KZZvnSjN2BDsBuQIGZXeOevovoKPhFMiic5Z+8rOjj3ZOXa5YvGzAJuBp4xN2np/vJFfwiGaJZvqRBRv5GFPwiadbcLP/oRX+dvF31wcuiqk1aHQW/SK5rbpY/YsG9z0ZZm2SXmR0GvOzuqzbjaRT8ItlkBaw1WN2S+37Y/tluD/Q66YzlhZ8PSl7euaHfrKMWTrl5h9qfLCGWmTpbor5uTefoRs9bWwILzexhoAx4yt1bepK/tQSh3yEThVkaNxS3SmY2DzgF+CTqWiRnXAO8Cdy3EY840nbgj+tux1npH3IVF/Bw+svbJIcBQ4HToy4kj3QBXk26vQy4H5jm7i9v6MFm9gGwBLgXeMzdZ6erMAW/2dXASCDTR+dL61ECNAAbdXUtu4Se7EYH3mGN38QyFpOVUzi3UGH4VbOhO0pabUFwEFay+cDF7n5Hcw80s50I3rAfdff301lU3ge/SLrYI9YP4yAf6tOirkWiZ2bbAokDr6qAh4BpwLMb0fLJCAW/iEgGmNl1wCDgbmD6Zm7kTSsFv4hIBphZL3dfHHUdqUS4n4FIbjOzLc3sxKjrSCczi5nZRVHXkQ9yNfRBwS+SkpmVApUEG+fakgnAT6IuQqKl4BdJ7VfAnsAPzewqM+sadUGby8wOBX4OfCN8TYM29Bhpm9TjF2mCma0Exrv79VHXki5mVgH0c/chUdci0dGMXyT/aLaX5xT8Is1bF5Jm9k0z6xVlMWmS/Jp6mtm3NvYJzKx3ekuSbFLwizTPAcysH8HBNztFW05aJF5TO+B3BH3/FjGz3mb2F+DCDNUmWaDgF2lanPBEhu4+H/gg2nLSwvnqNdUArzV1RzMrNbOhX3uw+yLg9YxWKBmn4Bdp2lxg77DFs0tioZntZWY3mdkOEda2qT4HvmVmA8PrugJgZl3M7E4zOyjpvh2B47NeoWScgl+kab8HegDHAO+EywYC3wLOSfeJs7JkEvBv4BLg7XBZe2A0cL67P2tmXc1sALA10NHMBoS3pY3Q+fhFmuDuDxGcWAsAMwM4E7gtnRe+ziZ3/xQ4NHE7fE37AtsBt4aL9yN4I2gH7AJcFd73uNb6uuXrNOMX2Ti/BU40syFRF5JGTwHvA5cDuPsj7n4swXUqXnb3Y8MvhX4boeAXaQEz24KgxfNt4DzgQTP7abRVbZ5wr57BwPbAdcAYM/uDmTV51adwd9YhBNsJtspKoZJ2/w8KwYpoSYQE2wAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "metadata": {}, "source": [ "![Euler_exp.png](attachment:Euler_exp.png)\n", "\n", "Considérons le graphe de $f(t,y(t))$. L'intégrale précédente revient à calculer l'air en bleue. La méthode des rectangles à gauche revient à calculer l'air achurée en vert. \\\n", "Alors on a l'approximation : \n", "$$ y(t_{k+1}) - y(t_k) \\approx h.f(t_k,y(t_k))$$\n", "Connaissant $y(t_0)$ on peut déduire à partir de cette expression : \n", "$$ y(t_1) = y(t_0) + h.f(t_0,y(t_0))$$\n", "Et ainsi de suite sur tout l'intervalle $[0,T]$.\\\n", "On remarque alors que les erreurs successives se cumulent. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### B - Méthode d'Euler implicite." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La méthode **d'Euler implicite** revient à utiliser la méthode des rectangles à droite pour estimer cette intégrale. Détaillons : " ] }, { "attachments": { "Euler_imp.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAADxCAYAAADP0BAoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzt3XeYFeXZx/HvfbYBSy8qVUGxYl5bkGhEjPraiQ0UWGI3GsXeS+y+GgtWogIGhEUNGhVb1CT2GtFoEiuK0kTpnV3Yvd8/Zs5ydjm7wO6ctvv7XJcXe2bOmecG4fzmmeeZZ8zdkdQxs18BA4B9gbXAke6+LKNFiYjUwRQMqWNmxcDXwJZAa2AkcK67L8poYSIidcjPdAGN3L5AM3dfAywAfpPhekRENiiW6QIaKzPrBuwCxMysl5n1zHRNIiIbQ8GwAWZW315VP+BnQDPgAGD/yIoSEUkhBcOG/b4+H3L3J4B3gDXu/pC7j4m2LBGR1FAw1MHMtgSuMLNema5FRCRdFAx1KwHygKGZLkREJF0UDHUrCX/9jZlZRisREUkTBUMtzOznwPbhy95A3/ocJvxPRCRnKBhqN3wDrzfGzkCLcKxCRCQn6M7nJMysAJgNrAEKwl+LgC7uXr6Rx+gHdA9frgWmuvuMFJQrIhIpBUMSZrYj0A14FSgnuBehP/CDu/8nk7WJiKSagqEOYc+hnGBZi7JM1yMikg4aYxARkWoUDCIiUo2CQUREqlEwiIhINQoGERGpRsEgIiLVKBhERKQaBYOIiFSjYBARkWoUDCIiUo2CQUREqlEwiIhINQoGERGpRsEgIiLVKBhERKQaBYOIiFSjYBARkWoUDCIiUo2CQUREqlEwiIhINQoGERGpRsEgIiLVKBhERKQaBYOIiFSjYBARkWoUDCIiUo2CQUREqlEwiIhINQoGERGpRsEgIiLVKBhERKSa/EwXICIimTfZrFMZ3GiwWsEgIiKsgcMMTgfm6FKSiEgTN8lsmMMYAIf7FQwiIk3YJLMTHcYDecADJe43KxhERJqoUrPTHMYCeQ4PTYOzQIPPIiJNUqnZCOBuwBxGlsCFuDuAhb9KEmZWAJQDzdy9LNP1iIhEodRsf+AVwICbhrlflbhfl5JERJqQh81aEVw+MuD+mqEACgYRkSalEG4HtgSmF8Jlyd6jYBARaSImmR1kcBpQaXDiIPflyd6nYBARaQImmO3pMBkwg3uHur9R23sVDCIijVyp2c4xeAFoBfxtAVxa1/sVDCIijdhjZrs6/B1oD7y5An49YgOzLBUMIiKN1ESzvSrgHwadgA+Aw093X7mhzykYREQaoYlmAwxeBtoCbwAHDnNfujGfVTCIiDQyE8z2NJgCFAN/XQGHbGwogJbEEBFpVGoONK+Bo053X70px1CPQUSkkUg20HziJoYCKBhERBqFGgPN77GRA83JKBhERHJcqdnQhIHm18rgfzdlTKEmjTGIiOSocWZbFMADwK/DTc8XwqBh7qsaclz1GEREctBEsyEF8B/g1w5lDld2hSMHNTAUQD0GEZGcM8nseoOrw5f/zIOThrj/N6rjKxhERHKFmU2CexzOBhy4oSvcMMB9bZTNKBhERHJEKdxCEAoVDmeVuD+YinYUDCIiOaDU7ELgEsAdTitx/1Oq2tLgs4hIlis1KwFuA3C4NJWhAAoGEZGsVmp2FPAngmc031bifluq21QwiIhkqVKzE4DHCS77jx+2gQfsREVjDCIiWeZRs46VcB1wJkFPYXQhnIm7p6N9BYOISJaYZLY7cJbDEKAZwUDzdSXu16azDgWDiEiGhUtb3A0MTtj8vsPFJe5vprseBYOISAY9brZ1AbwC9ATWGDwK3D/U/YNM1aRgEBHJkMlmndbASxaEwhcxODbKpS3qS8EgIpIBpWatgecNtgamFUL/Qe7zMl0XaLqqiEjaTTI7AHgH+LnDPINDsyUUQD0GEZG0mWC2h8FIg1+Gm2bmweFD3L/OaGE1KBhEJDKTzdqUw14OW8Rgs3DzUocyg2WVsNKg0KAl0BzAYZ7DeyXuP2Su8tQrNds7Bi8BxQR/Dg8UwC3Z1FOIszTdL5GTzKwAKAeauXtZpusRyVYTzIpjcBlwAdCiHoeoAB4ohN8Pcl/4mll+1EtJZ8I4s7YFUJkHbSrgXaCrw7MOpw53/ynT9dVGwVAHBYNI7a4zi20L+1QGN2MNAtqHuz4DvgV+IugZGEHvoBnQJuw9rACWhvt6AD8Pf070jsNlmZjH31CTzZqXweMGRyRud/jUYa/h7isyVdvGUDDUQcEgsr5Ss70NTnc4FOiYsOvLGFw8xP3ZTT3mo2b7VsIfgL419zl8HIO3gakOU7vC59ncm5hoto3BPcAhBD2hPACDV9bCSb9xn53RAjeCgqEOCgaRdSaY7RkL7s7dM2HzQoO/VELpN/DGNe6VDWljslnztVDswXX4ixxOZv1LUyuBTww+iMH4490/bkibUXnMrHtF8LjNE4ECYGUMDsiHfwF5g9yXZ7TATaBgqIOCQSRYrqEQbnUYTnC5ZwUw0aG0G7ybyrP3yWbty+FAYHeD3R12A9rWeNuUShgx3H1GquqoS6lZN4IH6JxGcLkM4JkYXJkNN6vVh4KhDgoGaeommh1sMJ5ghlGlwcMVcGXGBk7NbCJsbbA7waWaIUAhsMKD8HoiD6r+ra6F/HxoVQDTB7kvbEjT48ya5UO3GKwphyX5sDlwgQU9hMLwba8CVwxzf68hbWVaVTCYWTNgINAJeMndp1W9yawYKPIG/sGmipl1d/eZKThuPBiau/vqhO0GdPcMnaGIpNpDZgUt4GaDCwl6CR8ZnD7UfWqma0v0qNn2FfCAwb4beOu/CmGvQe6rNrWNh81aFcH1BD2C4iRvceAlh1tL3F/b1ONnI3N3zCwPeA4YQbD+9ylAe3evNLM+wDHAze6+JoO1JmVmvwVmuPuLKTh2PBhuAa73hL9UZjYEWO3uT0Xdrog9az1jzmWVBZzjh6S2t2pTrARo7gN9NFRdGnkc2Atwg3sWwKUjsrXXbGaT4NhwPGJ/YBXBoC8E92q1Cn9eCXxOMBuqdfzjDm0t+HJfEm5aHGwGgiDYjnUzrpYQjB+0ANYAkx3+UOL+SSp+a5kSD4YjgKvdvW8YEju4+3/MbFuCpBzm7hUAZtY+3P92BusmrOUCYIG7j0/YNtDdp0R0/HgwfAR0B1529xIzawM8TzDNbinBX6S4Enf/zszuBXZNctiH3f1hCx7Xd2GS/dPdfbiZtSUI62Q21MYYdx9nZkcTzCuv6Rt3PyH8f1nbn9VQd59hZvcD/5Nk/2h3H29mxwLnJdk/zd1PNLMOwDO1tDHE3Wea2SjgZ0n2P+Tuj5jZIODcJPu/dveTzKwj8HQtbRzv7rPM7I/Azkn2P+juE8xsMHBOkv1fuvspZtYJiJ8EbAUsYt0XyWB3n2NmDwI7JTnGH9291MyOB85Osv8Ldz/VzDYD/kI3iuwG+tCeZnzOIr+WL1jNsRtoY5S7T6qjjc/d/TQz2wJ4omrrQXS0M9gWw3iev00czdhKuMeCKweLDE4a6l7b/7+sN9mssByuBY4DejXgUF8AZw9z/3v8uIPcyyMoMSvFg+EmYIC77121wyyfYC2PkzwcQAlDYwrwuLs/kpGK19XXF7jD3fdJ2LYD8Ja7d4iojXgwHA4MBea5+3nh9v2AIuA+gi/4peHH3nb3FWa2B+vOMhJ94+7fmFl3YIck+5e7+ztmVggMqKW0DbUxzd2/raONZe7+7gbaeMvdV5rZz4F2dbTRA9g+RW187e7T62hjqbu/Z2ZF1H4pId5GX9YftKxvGzcBLwJvha/fdPdVdbTxVRjkWxKcfdbWRjP6M9hGcBuFVXcNu7/CNdzH7Q1sY4m7vx9eMu4PwKXsb7/gIixYM61gMT7qDKxZ0C+eWgmDhrtPT3KsnDTJrLdDT4M2AJWwOBY8CGdVDMyDgeNCEi4XOazKg9nHw7/S9fS0bGDAzcBBBAMpE4Ef3P3u8AzqcnevOiM1sycILiu9CnwNnOkNnJ62XkFm7QguZ7Um6PZNDv9hH0jwBTMm/If8EvCsu98Xfm574B/h72MM8K67j2tgLVWDz8A2wBsEYwsrE97zMDDH3a9qSFuSO8zsRYK/h09GetwXbEtby6sESzADuDsj/Nd+f5TtANgzdpwZEwmXxWm+GLa9Gi6cwTyDOxfCyKy9dCQpF3P3K4APgNnufpm73x3uGwZ8WuP9J4e/jnb330YdCgDuvgj4N8FDrxckfAl/D2wehsJmBFPYPk343BfAbUBZWNu4iEv7nODa4hE1tn9AMCtBpN7SGgpT7PjEUGizGA66Gl8+g/8WQa9h7rcoFJq2upbd7gvUtqhVSrtUHtw5OZWg5xB3FDA6/Dl++/zcdNUWhuBMggG5RDOAruGlCJFNlvZQgAkkhMLlV+PzZzBxGnySSzdhSerUFQydgPkbOoCZ5YfjEVH7A3CIme0Yvt7N3d9PqI1a6qsWDOE11agsBTon2UaS7SIblOlQuOxq6DaDC9+EnFuPSFKnrmBYSTC4mkwlQDjQ9RnBLI2NYmb/Y2Yvh2MCdXkS+Aa4wMx2AT5M2BdfgKpwvU8lBIOZnUgwe2hjaysysxPN7M+1vCU+5lBzGwRT10Q2WtJQMM5OW0/hKug2g6uGuo8sKCjSQ7ukSl1/Gb4i+UwRCFdBdPfvgVm1HcDMOptZqxqb/8u6ecW1CqfH3gmUEExVnJiwO/5Qi5qzjzxeW+gNwgWsaqlv2xqbKoB/Al1q+UgXYFqNbZ3Ddr+trR2RmsJQeI2aoXCEj4q8rSAUqo0pXH4VdJ3JVcPcb7rlTnbt2HHb+iyVLY1UPBias37v4EXWny+9nODmkZ7h2XX3+A4z28XMLjCzrgnvP43g1vUqHqyrUkENZvZ7M3vMguegxo0jmCve0as/xONTYDawI9XNA4rNbDMz2zrh2DEzO8PMjghnGsX9cWNqC49RSHAJ6+Uau7oB77v74vU/JbK+hFDYKtyUjlDIg4SewkwuG+Z+8x9G0heoeYIkTVzMzI4DfgF0MbMzzWzzcN8oYDczax5/czgAO4FgBcFbCL6IIThz/yXBjTz1XVK2P8FNKEcltLcKeJQgIEjYXgmMJJiZlOgfBIPBb1H9ZqZfAjPd/dkG3L09APiY4GEbiQ4gWHFSZIOyIRS6zuTSr6/12/7vLvaq9Koei0iVfHd/nOD292rc/YfwxreTgfsTtv/WzM4Kz64Jlg1iNMHduKvCbeMJLrv0BAaa2SLgRXe/s7ZC3P0AMysBat5Q0x1Itr77PcBLZraZhwt6hTVvRTANt8LMegFdgesIvsAxs58Bd4TH2MXMXgl/PtfdP6utPoIZUr/zhJtcwuVC1pDkz0+kpmwIhS4zuXLatX5nUTH9qWTzDRxGmqgNDTjdC3SvOVDs6y+zew3wSLjEAu5+grsfCDwCXOTuB9YVClB1g1oHd3/bzFqbWYGZ9Qc+9iS3nodn/icAV4Z3ZMe3e3z5jtBsgrP8m8P9n4b1HAj8K/7zBkLhDKDU3asGwMMlK84nCMQmc0ek1E+2hMI31/rtRcUMIKZQkNrVGQzhF94VwN7hWjHVmFmMYID6G4KlIZ4O162pVXiNvxPBI/8SzU+4ue4bgrVoHgDuqqO+mQQ3tQ2r5S0dCG5v/z2wl5mdH9Zcl85ASwu7QqGP3b1qfZlw3xDgnPCGPJFa2dO2VdpC4Vk70aCUJKEw704fWdSaXxFbb9KGSDUNeh6DmW1D8Jd9NcHNX70J1mT5Z7i/J7A48cvTzHYnCJNKgmUr1lsG14JF/foA42oMOm9qff0JprR+S7BURjHwmbvPCffv5u4fJby/BetuYFsA/Ac9j0Fq2JQlMexp28pivEq6QsEZS3jClxgKc2/zuytggMfWOyED4J7bf9blhx/+vYe713aSJU1Ig25M8+CZDYnTN7+vsX+9Bbh8I9ZzD+983uTnxiY5zhsJL9ebTpoYCuHrlcDf4q9rzGAS2STZEApdZ3LFrFt8VGWM/S2YfSiyQam4Y1mkyUsaCnCWH+F/rONj9WvrGTvJjDGsHwoXzb3dx1fC/rbuRkyRDVIwiESs1lAYmN5Q+O5OfyxWyQCz2m/yFElGt8GLRMim2DYW400yEQqLqm5eu3r6bf4Xq2BvhYLUh3oMIhGx56y3BTdZdgs3pTUUrrgKuszixm9v9SfzY/SNuk1pOhQMIhGw56y3VfIqwQ2VkO6ewtWs6Tyn4OKZt5e/k29JH5MqstF0KUmkgTIdChdfx9ebLem+96w7yj/BGvRcYxFAwSDSILWEwu9SEgpT7OTEUGi9GC8Zy6W2z/hf/Pj7GR21xIVERZeSROqpjlB4IPK2ptjJFqxJFp995Ic8xbDOx/g/rJL+7kmfTSJSL+oxiNTHPnROVygUPmmnGdWmpPrhTzJ8x1/4v1jDvigUJGIKBpFN1YsWNoLrSHEolJq1PvhUe6oin4cIH0DVegkVh00pPqlPf/8+P5+fxWLVHkwlEgkFg8gmsCm2uV1HX4poH26qdOeUqENhktmgvx/MrFeO4EgPv/pbrGTpLvOOPnDnvZcvdKNr3UfYeKtii/K95VrdGS1VFAwim8AH+o+8x5z4S4ez/Nf+p6iOP9ms+USzB187gD+PP4NW8VAwbPavVt518sE8uZk7kT2Gc1VsUf793fc4b8Hl35xOS405SqBBq6s2duEielpdVaoxsxftD5T7tjwdZShMNNvO4InXD6DP2LMhHgox8uceO3fi9bssP25hVG1BGAo9dj9/Yf704PG705nrXejlg9Zf8ViaFp0hiNSDX8IjG7Ps9saaaDbYYMzrB9AqMRTyaTbvuB8m3rLTimNSEAp7rAsFgJWsYRE1H8IlTZCCQSSDJps1L4M7DM58/QAYOwL3cKC5wFssGDz3kZt2WnHM3CjbXBcK31aFQsHs5p+WX7PqMy+v9zPRpRHRGINIhjxqtlM5fGBw5msH4tVCobJ44eC5j9yQjlDosGab99vfuvUE1lAZZVuSuxQMIhkw0ew3lfA+0Ofvh7Bs7NlQLRR+HH99ukLh7BlT77Fyq6jrs9K06FKSSBo9atbRYbTBkQBTjuXfk4ezE+tCYcHgH8enqafQ+/2zZ3x4T5G3VihINQoGkTQpNTsEeBjYwqFs3Jk8/Y+DGUTYcy+oLF5w3NwJ1++48qgfo2xXoSCbSsEgkmKTzZqXwy3ACIKewWe33tbqmf9uu+xSFAqShRQMIik00ewwg5FAb6AyFouNvOSRnZfMbvXptSRcPlIoSDZRMIhEaIJZcR78shL2MxhosEO4a+bK7Q86/47fF/5ydvFz18bvVEh/KHx8T5EXKxSkTgoGkQaYYFYcg34G+1bCfjHY06EgYWW7pWvb9nh4/u9e/+uEHS4/+qvix09LTyjsXu3mNYWCbAoFg8gmmGxW2BY6/S+UlJpdGIM9gAKHxGVOv3V4dc1W/abOL5n0TUW7nu0e22zI0Z+2VihIblAwSJMyzqxtPjSPQXOgNbA0BqsrYdXXsOQa9/Vu8hpn1qwI9nA4zmFID+jQGXZPeMt3Bm9UtOr41oqf//aTBQfdWJlfQOdwsbt2j2025FcKBcklCgZplCaY9YjBTg59DLYHdgK2L4A2AIlLR8a/MbcBSs3WAssc1lrw76NNAcQS02ItrJ4Pb6/pvvtfFv/qiu9X9zl6FdCGGIVAzzyCZVcBFAqSixQMkrMmm+WVwT4Gx1pwbT/fg2/gXrEwAGp5ik3NL/9WrPu3kA+0S/K5uQYvV8LEz+DCz2D0zud9OM2D0GmZrJFMhkLHNb3fO2vGx/cqFKQ+FAySVcaZbVEAvyGYzdOOYNlzgDKHlcCKcFu7cNbPFrCuB5DwhV4OfOnw3xj81+EL4LMV8PXpvv5CcQ+ZFbSElmuhRT4UVUKrGCyrgOXNYOUg9+Xx9w43u2BDv49HNx+y/79bPX6qQkFykYJBUmKS2S4OOwKtLTx7B3BYbhD/Yi4HVoRn7ssqYdcCuJKE9yeq5ex/PvCUw3OxIDhwmFNbANQmfO+i8L8GSWsodN/tgoX53+0W36ZQkCgoGGSTXGcW6wXdCqBDBZStgYXFsBDIWwPbOQwGBhFcsgeqX89P9jq+LeGL/33gLwaLE97SGshzaBsuNrc6Bm91gdcGuGfNMwRqhkKhF88fPHfCDSkLhQKFgkRPwSAb5TqzWG84dRv4PdA1/s0Tf8RdEiuAt4ElDhUGeTXfYOu+5JuHh1pg8Oev4ZFks4OyXRAKj51KmHGFXjz/uJ8mXr/DyiN/irIdhYKkmoJBkppgtkcMzgIOBNZsA+awZbh7JTCP4Au9A+u+9JcBLwKTV8ALp7uvTHfdmVJrKCxTKEjuUTBINRPNOhvcHoOhSXYvdLimGzyQePlmslkboHyQN81nBacrFFbmLSgY1W2P8xNDoVN573d/N/Pj+xQKEiUFQxN1r1lRh2A8YHNgKYDDrgYnEPQEKoDxMRhTGUzLjxXBx8m+/Ae5L0lr8VlEoSCNkYKhCRpn1qw9vOrQr5a3vJEH5x3v/nFaC8sxo7r3O3pm0fsKBWl0FAxNyHVmsa3h8AK4EdjZYZ7B80AxgMGPBk8McX89s5XmgEs5cGbR+6ejUJBGSMHQBNxrVtQeTukN5zpsC+Awz+HQEvcPM11fzhlEd9uLg0hPKFywsOC7XePbFAqSDrFMFyCpVWq2f3v4HLg/DIWFwE1F0Hu4QmGT2RTb3AaxHWEoFFW2nHfcD49dl8uh8GHrMT1W9VvcPcpjSm5Tj6ERKzU7ARhD8P95psH/VcAjw91XZLi0nOUD/Ufbwz60K/ifvLyiJYPnTbh5h5WHz4uyjXSHwpROZ19dUVJewAx0CVEAMPdk96EKgJnF799q5u5lma5nU4SPlHyaYGG5sUUwoqlOJ42amb3I0bwx8Ii7P/7FwnOSLt9RX5kIhbVW1iponDJvw2Z+iC+Nsh3JPeoxNEITzfYyeIwwFErgNHQGEK2/8NVee5/zg9eyrlN9ZDQUnEp/nKn+lEJBFAyNymSzNmVwjsGlBDON/toNzlAoZL/kobDdu7+bOTXyUPhnm4e2fLbjOVfFQ8GwyuZ/6zBpxdPzNeYogAafG42JZmeXB08Su54gFKYUwtHZtMCcJLc09kPhvT12uSRTobDbklPub/1k54+ibEdym4KhEZhodq3BvQSL0n0KHD0MjtSYQvZbGvuh8I9b9r14Sd6snePb0h0Kx8wb/XaU7Uju06WkHFdqdp0FK55icMEwuEuXjnKDQkGylYIhh5Wa/S9BKLjBhUPdR2a6Jtk4CgXJZrqUlNsuAXC4S6GQO5KGwprt3lEoSLZQjyEHTTZrWQbDDPYH1hjcmemaZOPUGgozpt6fjlDYfckp9x09b/Q7UbYjjY+CIcdMMjvF4S6DlgAGo4a6z8p0XbJhCgXJFQqGHDLJ7CCH0QTr9HxpMKoA7s90XbJhCgXJJQqGHFFq1hr4E0Eo3DvM/ZwMlyQbaXHe7KIHe/S7qGYonPXdx/cVWvNIn239XqsHt3qh47lXrguFWEXfJWfe9et59/0zynakcVMw5I7LgM7AF2vCQWfJfovzZhc92L3fxUvyZvWJb0tlKDy/+TlXVlCuUJAG0aykHPCYWRfgPIAYXHKi++oMlyQboSoU8hUKklsUDDmgAq4leA7zm0Pcn81wObIRFAqSyxQMWW6SWV/gFMA9uJwkWU6hILlOwZDFHjZr5TAeiBmMK3HXrJIsV0sovK1QkFyiwecsNdHs2iI4FNgemLEWLs50TVK3ZKGweVmf10fMmvpAzAojXb8qWSj0W3LWXUfMu0ehIA2mYMhCj5r9zOCa8OVq4NjfuC/IZE1St8V5s4se7NbvkiX5s3aKb6sKBVcoSG7RpaQsVAkl4Y/LHEqGuesffBarCoWChFAo7/OaQkFylYIhyzwUPGd6OIDB8BL3JzNcktSh1lCYOfVBhYLkKgVDlmkBhwFbAD92geczXY/U7oeiT5spFKQx0hhDljE4CcBhnB7LmcU6UvRQ1/73rI4tyUQorO235Ky7FQqSKgqGLPKo2ebAIQDhNFXJRi3Is9u4bHVsSdXaRykLhTZ/3Or5TucpFCStFAxZxIOxhQLgneHun2e6HlmfPWct7EZ2oz0d4tsUCtLYKBiySAE8UAaLDeZmuhapk8V/6FzW59WzZk19KJdDYVyXww5fdM70Llyuv3cSMD03vnYWzBAqB5q5e1mm65HsYMX2so2ic5tWXaZd/P30x9MRCr9YfPZdh8+/+8Mo2wEY1/nQI74qfnEYAK/zeeUdvmPUbUju0awkkU21kgo/n5sv+O7r61MSCh3PuyodofBw54OOrAoFgD50tSnWKup2JPfoUpJIfSyivJAWlVGmQlUoWHn42NbU9hSmFb98fPx1bEXeTxVXVbzts31Z1G1J7lGPQSQLpDsUEnsKzSpbz2l3T89RzGFV1G1JblIwiGRYpkOh5Idnbij4vvnSqNuS3KVgEMmgbAiFXqsGLIq6LcltGmMQyZD32o7q+XyH86+sHgojRh4+/66pUbc1rsuhA79q8eLQ+GuFgtRFPQaRDFAoSDZTMIikmUJBsp0uJYmkUaZDYficZ6/vubr/4qjbksZFPQaRNFEoSK5QMIikgUJBcokuJYmkWFpDoevBA79q/pJCQRpEPQaRFFIoSC5SMIikSGZDoa1CQepNwSCSAu+2ur/X+qFwbhpD4RmFgtSbxhhEIvZuq/t7vbDZBVdWWHkxJIbCnQoFyQnqMYhESKEgjYGCQSQiCgVpLHQpSSQC6QyF0d32O3Z6s9eOjb9WKEjU1GMQaSCFgjQ26jGINECmQ+GEOc9dv+XqvRUKEikFg0g9PdPhnB3/2fZBhYI0OrqUJFIfx7Lt+21HjVYoSGOkHoPIptqdtjaEq90qmkMQCnstOe/Ow+bf8VHUTSkUJBPUYxDZBDbFNrdL2YN8glDwvDX7LLrotsPmRR8KY7vtNygdofBT/pct1m4W9HxEQMEgskl8oP/ok/kScMPK91p67siDF9z6SdTtjO2236Bvmr12TPx1M287O1WhMKZb/ysWXvTNmXSiKMpjS+7atyHVAAAFvUlEQVQyd890DVnLzAqAcqCZu5dluh7JDmb2Ilcwq89Ox3w0bO4TC6M+ftJQmP3cDVGHwo8FnxWP7T7g8uWxedsEG1jkm7OlD/RlUbYjuUc9BpH6uJm/lsx94p2oD5uuUPgp/8sWY7vuty4UAL7mRwayPMp2JDcpGESyRDpDYUy3/lcsz/+pKhSKvmj5ht/BR44uIYiCQSQrZDIUuq/u+0K7u3o+TWWULUkuUzCIZNiYrgMGJ4ZC88r2M06e9bdrUxIKPfZZLxTOnPX+I1G2I7lPwSCSQWO6Dhj8bfPXj46/bl7ZfsZJs1++oVvZ7pEOAFeFQsKYgkJBaqNgEMkQhYJkKwWDSAYoFCSbaUkMkTRbLxQq2n9/0pyXb4w6FNa7TwHovnrPF86c9Z5CQeqkYBBJo9Fd9x08vfkbCgXJarqUJJImCgXJFQoGkTRQKEgu0aUkkRRLayh0G3DF8ti8rePbFApSH+oxiKRQ2kMhT6EgDaceg0iKZDIUeqze8/kzZr03Icp2pOlQMIikwOhu+x43vdkbR8VfKxQkl+hSkkjEFAqSLmbWNhXHVTCIRKhmKLSobP+dQkFSwcyGAYen4tgKBpGIJAuFU2b8/SaFgkTNzPYHRgOdzKxX1MdXMIhEoLZQ6Lx2F4WCRMrMDPg50Dz8dVDUbSgYRBooo6FQ1u85hULT4u4OPBC+fNrdb426Dc1KEmmA0V37Hz+92ZtHxl+nMhTGdBtw5Yq8eVWXDXqU9XvujJnvToyyHck5KXkUq4JBpJ7u6NH77PmF0xQKkkkpCQZdShKpB7uFofMLp50af61QkE1lZoeaWctM15GMegwim8h+x7bsQNUXdfPKtt+eOPeFK7tU7rIsylOtOQWfFI/t+qvLVsYWVrXVtWy3p86c/e7YqE/p1laWV0Z7RNkIPYC5ZvYUMBH4m7tXbORnywh6Cy1SUZgF4xiSjJkVAOXALuGv0tQdQAc7kb/TikIAyvjM7+AU3mdJ5G39HwfbjtwBGID9xJjK07gz8nYCgwhmuFySouPL+toDbyW8XgA8CUxw97eSf2QdM5sG/AhMBp5z92lRFaZgqEM4LewRoH+ma5Es0o1iu5G2LKPCr+InlpC6s+1DaWmn054XWOoPsThl7QRXD/IIzkQlfbqw/pWbOcDl7l7nAohmthNwEEEofBVlUQoGkXqw56w3xnw/zBelvK2nra8f6R+kuh1JLzPbBvg6fLkceAqYAPxjEy4ppYSCQUQkA8zsLmAPgqsSj7p7pBMXGkLBICKSAWbWyd3nZbqOZDRdVaSezGxbMxuc6TqiZGb5ZnZZputoCrI1FEDBIFIvZtaOYAZJu0zXErE7gAGZLkIyS8EgUj9XA32AI83sFjMrzHRBDWVmRwFDgd7h72nXTNckmaExBpF6CIOgDDjJ3cdluJzImNmzBOu0Dcx0LZI56jGISE06W2ziFAwiDVP1JWpmfcysTSaLiZqZbWZmvevzuVTUI+mhYBBpGAcwsx7AnwnWv8l18d9TC+AGgnGHjWJmW5jZw8BZKapN0kDBIFI/8Z5CPoC7zwC+y1g10XHW/Z5WAh/W9kYza2tmB1f7sPvcuj4juUHBIFIP7r4GmAv80sx2MrPt4/vM7CAzu9XMemauwnqbCexsZr3MbEB8o5l1MLPxZpa4blgH4KiaB5Dcp2AQqb9LgW2AA9z9i3DbzkA7d7/U3adnrrR6u5dg/Z4rgI/CbcXA8cAId3/DzNqFD6DvDrQOQyQXQ1BqoecxiNRTuPplzRUwLwZuy0A5kQgD7oD462CBYQ4EpgGjws0HAscCLYHtgFsIpu4OT2etkjrqMYhE6xzgMjPbPdOFROhpYDFwGYC7/9ndBwMjCB4uM9jdFQqNiHoMIhEIZyVtDWwLXAk8a2YnuPsrma2s/sJZSX0JLiVdBnxoZg6MdPekz20wsy2AfYACM+vi7nPSVrBE5v8Bs7xtbj/0EC0AAAAASUVORK5CYII=" } }, "cell_type": "markdown", "metadata": {}, "source": [ "![Euler_imp.png](attachment:Euler_imp.png)\n", "\n", "Cette fois ci on fait l'approximation suivante : \n", "$$ y(t_{k+1}) - y(t_k) = h.f(t_{k+1},y(t_{k+1})$$\n", "\n", "Si la méthode d'Euler explicite sous-estime légèrement l'intégrale, la méthode d'Euler implicite la sur-estime. On remarque également que pour une équation différentielle linéaire il suffit d'appliquer un décalage d'indice pour passer d'une méthode à l'autre. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### C - Mise en oeuvre. Filtrage linéaire passe-bas." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Considérons l'équation différentielle descriptive de l'évolution du système : \n", "\n", "$$ \\frac{ds}{dt} + \\frac{s}{\\tau} = \\frac{H_0.e}{\\tau}$$\n", "\n", "avec $\\tau = \\frac{1}{\\omega_c} = \\frac{1}{2\\pi.f_c}$\n", "\n", "Si en plus on adjoint la condition initiale : $s(t=0) = 0$ alors le problème suivant, appelé **problème de Cauchy**, possède une unique solution. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\left\\{\\begin{eqnarray}\n", " \\frac{ds}{dt} + \\frac{s}{\\tau} &=& \\frac{H_0.e}{\\tau} \\\\\n", " s(t=0) &=& 0\n", "\\end{eqnarray}\\right.$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On connait déjà la solution de ce probème de Cauchy. Supposons que $e(t)$ soit un échelon de tension : \n", "$$\\left\\{\\begin{eqnarray} \n", " e(t) &=& 0 \\; \\text{si} \\; t< 0\\\\\n", " e(t) &=& E \\; \\text{si} \\; t \\geq 0\n", " \\end{eqnarray}\\right.$$\n", " \n", " $s(t) = E(1-exp(-t/\\tau))$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "H0 = 1.0\n", "fc = 1000.0" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEKCAYAAAD0Luk/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAn5klEQVR4nO3deZgU5bn38e/NMMAoi+yiGHADRVB0UGJQA6KCSxI0HIx7oobs53hMeNVoEo8xmsSYqFE0LokmokhMzGIQYwgTBQ3IvjgsAwiOgsAYNmFYZu73j6qBWZlupruqp/v3ua66urq25+6anrq7nqp6HnN3REQkN7WIOwAREYmPkoCISA5TEhARyWFKAiIiOUxJQEQkh7WMO4CGdOnSxXv37n3Q63/88ccceuihqQsoRRRXchRXchRXcrIxrjlz5mxy964Jr+DuGTkUFhZ6U0ybNq1J66eL4kqO4kqO4kpONsYFzPYkjrWqDhIRyWFKAiIiOUxJQEQkhykJiIjkMCUBEZEcFuktomb2LrANqAD2uvugKMsXEZGa4nhOYJi7b4qhXBERqSVjHxZrqoE33QSHHVZz4pgx8PWvw44dcNFFdVf64heDYdMmGD267vyvfQ0uvxzeew+uuabu/G9/Gz7zGVi2DL7ylbrz77gDWraE+fPhppvqzr/nHvjUp+DNN+G73607/4EHYOBA+Mc/4O67687/1a+gb1/461/h/vvrzv/d7+Coo+CFF+DRR2vMGrh5c7DdLl3g6aeDobbJk+GQQ2D8eJg0qe78oqLg9Wc/g5dfrjmvoABeeSUY/+EPYerUmvM7d4Y//CEYv+02eOut/XEddhj07AnPPhvMv+mmYB9W16cPPP54MD52LCxfXnP+wIHB/gO4+mooLa05/8wz4d57g/HPfx7KyqjwFuzxluyubMmes89l939/h927oeLaL9FuQxnL2j1FhbcIhrOHUnnNdVRUQMVXvk6lWzCdPCq8BZXnDKXi4s9SsaOcyu//3/7pGBWeR+XZn8bP+TRs24Y/+BAOuBtOOAw7Fz/9DLzsI/zJp6hqAH7fMuedjw84mVX/LmDJlx8I1wvmA/gFI/A+ffHS9/GX/rR/u1XbGHkh/olesGYN/uqrdf+2F18CRxwBJSUw7Z/7yt5n1Cjo2hWKi2H69Dqrrxn8SWbMABYthJmz6m7/iivg0EPxOXNh3ry686+9BvJbwcyZsHhxUH71+dffELxOnw7Ll9Vct2U+fs21wXhREaxatW9WeXk5r3daD1/4QrDN1/4R/H9X17598J2A4Du8fn1Yfvj5O3cO/u8h+N8rK6u5/uGH4yNGBuMv/RG2bq05v+dRMHx4MD5pEuzcwZ4rBzN0aN3dkA5RJwEH/m5mDvzK3R+vPtPMxgJjAbp3705R1UHlIAyoqGDz5s01pm1YvpwPiopoUV7OybXmAaxfupT1RUXkb9nCSfXMf3/JEjYWFdF6wwZOrGf+e4sWUdauHQVr19K3nvlrFixge9++zC4p4bh65q+aO5etu3fTfvFijqlnfsns2WzfvJmOCxbQq575y2bOZOe6dXRetIij6plf/NZb7Fq5kq5LlnBkrfkVFRXMmDGDPR06cPjSpRxez/oLX3+dyjZtOGL5crrVM39++Pc6auVKOtfe/s6dLArn91q9mo615u+prGRJOP/otWvpEM6vCP+Ou/LzKS4qYs8eo9vKrVR82I6tFW2DobItZZuPYs3Ny9i1K4+2/zqLvZvPoLyyNTu8DTsr27CtpAtl/y5j164W2Krb2bO7BXu9Jbs9n93ekt2zCigfv4e9e43K8ufYXdmSSvL2BzgD+HHVm9/U+ezMAR6oejO+7vyFwMMAbYB7684vBh4HaAfcXnf+MuAxgE7AuLrzV1SNDA6HWvbl/COBbxxgfi/Cf8GaHq4aOS4canmgauTEcKjlXeAFgJPDoZZ9u+S0cKjlrqqRBj7f96tGzgqHWn5QNTI0HKr5sPr88+quC7CoauTCuvPWAHOr3nym/vkzq95cVv/8GVVvxgBw2qsbuOCCovpjSTHzCDuVMbMj3f19M+sGvAZ8y91fr2/ZQYMG+ezZsw+6rKKiIoZGlUqToLj227sX1q2DDz+EDRtg48b9Q9X7lSu3UlHRnq1bYcsWKC9PbNt5ecFJS9VQUFBzvHVraNUK8vOD14bGa0/Lzw9O5pYvL6Z//xNp0SIoKy+PGuO13zc2r0ULMAsG2D9+oKG+5d58cwZnnTUkoWUb224iEl3uX//6F0OHfjql20zFsvV979NVfjKa8v9oZnOSud4a6ZmAu78fvm4ws5eAM4B6k4A0f7t2wcqVsGJFcAZeWhqcaVcN69ZBZWXd9Vq3DmoWunaFtm33cuyx0KHDgYd27Woe9PPz0/vZioo+ZOjQen7xxqxTpz106xZ3FHXl53va/yYHoyoB57LIkoCZHQq0cPdt4fgFVDvJk+Zr2zZYuBAWLIB33gmq41esgLVrax7kCwqCSxJHHQXnnx9U8x91FBx+OHTrtv/A367d/l9YRUULM/LMSSRbRHkm0B14yYL/7pbAc+4+JcLyJQW2bw+uzb31VnBtdv784Nd+lfbtg2u0Z54J110Hxx8fDMceC506pe/0WUQOTmRJwN1XAadEVZ6kRllZcCPPG2/AjBnBr/2qX/fHHQennhrcUDVwIJxySvDrXgd6keYja28RlYOzdy/MmgVTpsCrr8Lbb4M7HHooDB4Mt98OQ4YE47XvwBWR5kdJQNi7F+bM6cjzz8NLLwV35bRoERzo77wTRoyAwsLgrhgRyS76t85hCxbAk0/CxImwadMpHHooXHIJXHZZcOG2Y8e4IxSRdFMSyDHbt8Nzz8ETT8Ds2cHtmJ/7HJx00mLGjetPQUHcEYpIlHL8DtncsX59UJ9/1FFBixbl5fDgg/D++0ErEuecs0kJQCQH6Uwgy61ZAz/6ETzzDOzZA5deGjRxdOaZuotHRJQEstaGDcHB/7HHgoP99dfDzTcH9+yLiFRREsgyu3YFjXjee29Q5XP99fD97wf374uI1KYkkEVeew2++c2g2YbLLgtapu7bN+6oRCST6cJwFigrgyuvhAsuCJ7mnTIlaJpfCUBEGqMzgWbu1VfhS18K+sG580645RZo0ybuqESkudCZQDO1axd861swcmTwUNfMmfCDHygBiEhydCbQDJWWBr1fzpwZ9LR47706+IvIwVESaGaKioJujnfsCOr9L6untzoRkUSpOqgZefrpoE2fTp2C1j2VAESkqZQEmgF3uPvu4ALw0KFBNdAJJ8QdlYhkA1UHZbjKyuAC8PjxcPXV8NRTQafnIiKpoDOBDFZZCV/9apAAvvMd+O1vlQBEJLWUBDJUZWXQ2ucTT8B3vws//akafBOR1FMSyEDuQRXQk0/CHXcE1wOUAEQkHZQEMtA99wRVQOPGwV13KQGISPooCWSYX/86+PV/zTXw4x8rAYhIeikJZJDXXoOxY4OO3Z96KujsXUQknXSYyRCrVgVPAp94Ivz+95CfH3dEIpILlAQywMcfw6hRwfif/gTt2sUZjYjkEj0sFjP3oPevJUvglVfg2GPjjkhEcomSQMyeeAImTQouAl9wQdzRiEiuUXVQjJYuDZqCPv/84HZQEZGoKQnEZNcuuOIKOPRQeOYZ3QkkIvFQdVBMvvc9mD8f/vIX6NEj7mhEJFfp92cM3n4b7r8/eCbgM5+JOxoRyWWRJwEzyzOzeWb2ctRlZ4I9e4wbbgh+/d93X9zRiEiui6M66H+AYqB9DGXHbuLET7BoUVAN1D4n94CIZJJIzwTMrCdwMfBklOVmihUr4He/68Xll6saSEQyg7l7dIWZvQjcC7QDvuPul9SaPxYYC9C9e/fCiRMnHnRZ27dvp23btk2INvVuu20ACxa059ln36ZTp91xh1NDJu4vUFzJUlzJyca4hg0bNsfdByW8grtHMgCXAOPD8aHAywdavrCw0Jti2rRpTVo/1SZPdgf3r31tRdyh1CvT9lcVxZUcxZWcbIwLmO1JHJujrA4aAnzWzN4FJgLnmtmzEZYfm927g4fC+vaFSy99P+5wRET2iSwJuPtt7t7T3XsDXwD+6e5XR1V+nB5+GJYvh1/8AvLzo6t+ExFpjJ4TSLMtW+BHPwr6CLjwwrijERGpKZYnht29CCiKo+yo3X8/fPQR3Htv3JGIiNSlM4E02rABfv5zGDMGTj017mhEROpSEkije+6B8nL44Q/jjkREpH5KAmny/vvw6KPwpS9Bnz5xRyMiUj8lgTT5+c+hogK++924IxERaZiSQBqUlcFjj8GVV8LRR8cdjYhIw5QE0uChh2DHDrj11rgjERE5MCWBFNu2LUgCl14K/frFHY2IyIEpCaTY44/D5s1w221xRyIi0jglgRSqqAiaiPj0p+H00+OORkSkcUoCKfTXv8K778J//3fckYiIJEZJIIUefBB69YLPfjbuSEREEqMkkCILF0JREXzjG9AylhaZRESSpySQIr/8JRQUwA03xB2JiEjilARSYMsWmDABrr4aOnWKOxoRkcQpCaTA88/Dzp0wdmzckYiIJEdJIAWefBJOOQUKC+OOREQkOUoCTTR/PsyZAzfeCGZxRyMikhwlgSZ66ilo3RquuiruSEREkqck0AQ7d8Kzz8LnPw8dO8YdjYhI8hq9o93MErnfpdLdNzc9nOblT38K2gnSbaEi0lwl8ljTB+FwoBrvPOATKYmoGXnuOejZE4YOjTsSEZGDk0gSKHb3A3aTbmbzUhRPs7FpE0yZAv/7v9BClWoi0kwlcvi6MoFlzmxqIM3Niy/C3r26ICwizVsiSeBvZvYbM2uwusfdy1MYU7Pw3HNBpzEnnxx3JCIiBy+RJHACMBf4l5k9aGZd0xxTxlu7Ft54I+hDWM8GiEhz1mgScPfd7v5L4ETgPWCWmf3QzNqnPboM9fzzwesVV8Qbh4hIUyV8SdPdy939Z0B/YCcwx8y+k7bIMtgLL8AnPwnHHBN3JCIiTZNwEjCz3mY2EriR4HbQbcA96QosU61eDfPmwejRcUciItJ0iTwsthA4ElgLLAWKganAw8DytEaXgV56KXi99NJ44xARSYVEnhMYBax2d09zLM3CH/8YtBiqqiARyQaJXBhelYoEYGZtzGyWmS0wsyVm9n9N3WbU1q+HN9+Eyy6LOxIRkdRoNAmY2dxULAPsAs5191OAgcBIM/tkAutljD//GdyVBEQkeyRSHXRieF2gIQZ0aGwj4dnE9vBtfjg0qyqml16C446Dk06KOxIRkdSwxmp6zKxXAtupcPfSRgszywPmAMcBj7j7LbXmjwXGAnTv3r1w4sSJCRRdv+3bt9O2bduDXr/u9loyatSn+K//KuUrX1mVMXGliuJKjuJKjuJKTlPiGjZs2Bx3H5TwCu4e+QAcBkwD+je0TGFhoTfFtGnTmrR+bRMnuoP7m282bTupjitVFFdyFFdyFFdymhIXMNuTOB7H0v6lB30PTANGxlH+wZg8GTp3hjPOiDsSEZHUiSwJmFlXMzssHC8Azid47iDjVVbCK6/AiBGQlxd3NCIiqZPIhWEAzKw18Hmgd/X13P2uBDfRA3gmvC7QApjk7i8nHmp85s6FjRvhoovijkREJLUSTgLAn4EtBBd2dyVbkLsvBA7YOU2mmjw5aC10xIi4IxERSa1kkkBPd282dfipNHlycC2gS5e4IxERSa1krgm8aWYD0hZJhtq0CWbNUlWQiGSnZM4EzgK+ZGarCKqDjOAZsKzuW+vVV4OnhJUERCQbJZMELkxbFBnslVega1c47bS4IxERSb1kqoPWAmcD17n7GoImH7qnJaoM4Q5Tp8J550GLWJ6oEBFJr2QObeOBM4GqThW3AY+kPKIMUlwctBw6fHjckYiIpEcy1UGD3f00M5sH4O7/MbNWaYorI0ydGryee268cYiIpEsyZwJ7wge9HIIngIHKtESVIf75Tzj66GAQEclGySSBh4CXgG5m9iNgOlncx3BFBRQVqSpIRLJbwtVB7j7BzOYAwwluDx3l7sVpiyxmc+fC5s1KAiKS3ZK5JoC7L6WZNPrWVFXXA4YNizcOEZF00o2PDZg6Ffr3h+5ZfROsiOQ6JYF67NoF06erKkhEsp+SQD1mz4bychg6NO5IRETSK8r+BJqNN94IXocMiTcOEZF0i6w/geZk+nQ44YSgzSARkWym/gRqqayEGTNg9Oi4IxERST/1J1DLkiXB8wFnnx13JCIi6ZdsfwJfNLPVZHF/AtOnB69nnRVvHCIiUVB/ArVMnw49eqi9IBHJDQlXB4V9CBwGfCYcDgunZZU33gjOAszijkREJP0STgJm9j/ABKBbODxrZt9KV2BxWLsW3ntP1wNEJHckUx10A0GfAh8DmNlPgLeAX6YjsDjoeoCI5Jpk7g4yoKLa+4pwWtaYMQPatoUBWX8PlIhIIJkzgd8AM83spfD9KOCplEcUo1mz4PTToWVSbauKiDRfyVwY/jlwPfBROHzJ3R9IU1yRKy+HBQvgjDPijkREJDrJ9icwh6DZiKwzfz7s2QODB8cdiYhIdBpNAmY23d3PMrNthP0LV80ieFisfdqii9DMmcGrzgREJJc0mgTc/azwtV36w4nPrFlw5JHBICKSK5J5TuC/zKxdOH6Hmf3RzE5NX2jRmjVLZwEiknuSuUX0e+6+zczOAs4juDPosfSEFa2yMigp0fUAEck9ySSBqmcELgYed/e/Aa0SXdnMjjKzaWb2jpktCZ9Azghvvx286kxARHJNMkngfTP7FfAFYHLY01gy6+8Fvu3u/YBPAt8ws35JrJ82M2cGbQUNGhR3JCIi0UrmID4GeBW4wN03Ax2BcYmu7O7r3H1uOL4NKAYy4jLsrFnQrx+0y+pL3yIidZm7N74Uqe1j2Mx6A68D/d19a7XpY4GxAN27dy+cOHFispveZ/v27bRt27bR5dzh0ks/xZlnlnHLLcsOurxUxxU1xZUcxZUcxZWcpsQ1bNiwOe6eeL2Guyc0AFOAicD/A75dNSS6frXttCV44OyyAy1XWFjoTTFt2rSElluzxh3cH3mkScUlLNG4oqa4kqO4kqO4ktOUuIDZnsQxOdI+hs0sH/gDMMHd/9iUbaXKvHnB62mnxRuHiEgcIutj2MyM4LbSYg/aIcoI8+ZBixZwclZ1kikikphkksBZwFwzW2ZmC81skZktTGL9IcA1wLlmNj8cLkoq2jSYOxf69oVDDok7EhGR6EXWx7C7TycD+x+YNw/OOSfuKERE4pHMmcBa4GzgOg/6Fnage1qiisjGjVBaqusBIpK7kkkC44EzgSvC99uAR1IeUYSqLgqfmjUtIImIJCeZ6qDB7n6amc0DcPf/mFnCzUZkoqokMHBgrGGIiMQmmTOBPWaWR9ingJl1BSrTElVE5s2D3r2hU6e4IxERiUcySeAh4CWgm5n9CJgO3JOWqCIyd66qgkQktyXSs1hLd9/r7hPMbA4wnOAun1HuXpz2CNNk2zZYsQKuuSbuSERE4pPINYFZwGkA7r4UWJrWiCKyYEHwqjuDRCSXJVIdlHH39qeCLgqLiCR2JtDVzG5uaGYmNQGRjMWLgwvCRxwRdyQiIvFJJAnkEbT8mVVnBIsWQf/+QWcyIiK5KpEksM4Pos+ATOYenAlce23ckYiIxCsnrwmsXRvcHTTgoNtEFRHJDokkgeFpjyJiixcHr/37xxuHiEjcGk0C7v5RFIFEadGi4FVJQERyXTJPDGeNRYvgE5+ADh3ijkREJF45mQQWL9ZZgIgI5GAS2LMHiot1UVhEBHIwCaxYESQCnQmIiORgEqi6KKwzARGRHEwCixdDXh6ccELckYiIxC/nksCiRdCnD7RuHXckIiLxy7kksGSJrgeIiFTJqSRQXg6rVkG/fnFHIiKSGXIqCZSUQGWlrgeIiFTJqSSwNOwTTUlARCSQU0mguDjoP6BPn7gjERHJDDmVBJYuhV694JBD4o5ERCQz5FQSKC5WVZCISHU5kwQqK2HZMiUBEZHqciYJlJbCjh1w4olxRyIikjkiSwJm9msz22Bmi6Mqs7ri4uBVZwIiIvtFeSbwNDAywvJq0O2hIiJ1RZYE3P11ILauKpcuhY4doWvXuCIQEck85u7RFWbWG3jZ3ettvcfMxgJjAbp37144ceLEgy5r+/bttG3bdt/7m24ayN69xsMPzzvobaZC7bgyheJKjuJKjuJKTlPiGjZs2Bx3H5TwCu4e2QD0BhYnsmxhYaE3xbRp02q8797d/frrm7TJlKgdV6ZQXMlRXMlRXMlpSlzAbE/iuJwTdwf95z/w4Ye6HiAiUltOJAFdFBYRqV+Ut4g+D7wF9DWzUjO7IaqyV6wIXvv2japEEZHmoWVUBbn7FVGVVduKFdCiBfTuHVcEIiKZKSeqg0pKggTQqlXckYiIZJacSAIrVsBxx8UdhYhI5sn6JOAenAkcf3zckYiIZJ6sTwKbNsGWLToTEBGpT9YngZKS4FVnAiIideVMEtCZgIhIXZHdIhqXqttDjz467khEJC579uyhtLSU8vLyGtM7dOhAcVU78xkkkbjatGlDz549yc/Pb1JZWZ8ESkqCfoV1e6hI7iotLaVdu3b07t0bM9s3fdu2bbRr1y7GyOrXWFzuTllZGaWlpRzdxF+4WV8dtGKFrgeI5Lry8nI6d+5cIwE0Z2ZG586d65zZHIysTgLuekZARALZkgCqpOrzZHUSKCsLbg/VmYCISP2yOgnoziARyXTuzrnnnsvWrVvZvHkz48eP3zdv48aNjByZ3l55szoJVLUeqjMBEclUkydP5pRTTqF9+/Z1kkDXrl3p0aMHM2bMSFv5WX13UEmJbg8VkXoMHQpAQUUF5OUF08aMga9/HXbsgIsuqrvOF78YDJs2wejRNecVFSVU7LPPPstDDz3E7t27GTx4MOPHj2fChAmMHTsWgFtvvZWVK1cyZMgQRowYwX333ceoUaOYMGECQ4YMOaiP2pisPhPQ7aEikimKi4t54YUXmDFjBvPnzycvL48JEyYwY8YMCgsLAfjxj3/Msccey4wZM7jvvvsAGDRoEG+88Uba4srqM4GVK+GYY+KOQkQyTvjLfWd99+MfcsiBf9l36ZLwL//qpk6dypw5czj99NODsnfupFu3bnz00UcHfCagW7dufPDBB0mXl6isTgKrV8NnPxt3FCIiwQXg6667jnvvvbfG9AcffJDKykpatKi/Yqa8vJyCgoK0xZW11UE7d7ZgwwZdDxCRzDB8+HBefPFFNmzYAMBHH33EmjVr6Nu3L6tWrQKgXbt2bNu2rcZ6y5cvp3///mmLK2uTwPr1bQAlARHJDP369ePuu+/mggsu4OSTT+b8889n3bp1XHzxxRSF1UudO3dmyJAhDB48mHHjxgEwbdo0Lr744rTFlbXVQevXB6dPSgIikikuv/xyLr/88hrTevXqxbXXXsuNN94IwHPPPVej7aC//OUv/PnPf05bTFl7JrBunc4ERCTz9ejRgy9/+cts3bq1zryNGzdy880307Fjx7SVn7VnAuvWteGQQ6Bbt7gjERE5sDFjxtQ7vWvXrowaNSqtZWftmcD69W3o3RuyrM0oEZGUytoksG5dgaqCREQakZVJwD04E1ASEBE5sKxMAv/5D3z8cUslARGRRmRlEli9OnhVEhCRTDd69Oh9D4vdc889+6bv3r2bc845h71796a1fCUBEZGYLFmyhIqKCo4JGzmrngRatWrF8OHDeeGFF9IaQ1beIqokICINuekmmD8/GK+oKNjXknRTDBwIDzxw4GU+/vhjxowZQ2lpKRUVFXzve99jwYIFfO5znwOCZqR37tzJwIED6dOnD5MmTWLUqFHcdtttXHXVVU0PsgFZeybQrt0eOnSIOxIRkcCUKVM44ogjWLBgAYsXL2bkyJF1mpEuKChg/vz5PPXUUwD079+ft99+O61xZe2ZwOGHlwP5cYciIhmm+i/2bdt2HrAZ51QaMGAA3/72t7nlllu45JJLOPvss1m3bh1du3ZtcJ28vDxatWpVoxmJVIv0TMDMRprZMjMrMbNb01XO6tXQo0d5ujYvIpK0Pn36MHfuXAYMGMAdd9zBXXfdRUFBAeXlBz5W7dq1izZt2qQtrsiSgJnlAY8AFwL9gCvMrF+qy6mshHffhR49dqZ60yIiB+2DDz7gkEMO4eqrr2bcuHHMnTuXE088kZKSkn3L5Ofns2fPnn3vy8rK6NKlC/n56avViLI66AygxN1XAZjZROBzwDupLGT9eti1q6o6SEQkMyxatIhx48bRokUL8vPzefTRRykuLqaoqIjzzjsPgLFjx3LyySczYMAAJk2alPZmpAHM3dNawL6CzEYDI939xvD9NcBgd/9mtWXGAmMBunfvXjhx4sSky/nww9b86lfHcuGFKzj99D2NrxCx7du307Zt27jDqENxJUdxJSfuuDp06MBxxx1XZ3pFRQV5qbg96CDt3LmTiy++mNdee61GHFVxXXXVVdx5550cf/zx9a5fUlLCli1bakwbNmzYHHcflHAQ7h7JAIwGnqz2/hrg4YaWLyws9KaYNm1ak9ZPF8WVHMWVHMVVv3feeafe6Vu3bo04krqmTJnia9asqTFt69atvmvXLn/mmWcOuG59nwuY7Ukcm6OsDnofOKra+57hNBGRnDVixIh6p7dq1Yprr7027eVHeXfQ28DxZna0mbUCvgD8JcLyRSSHeURV31FJ1eeJLAm4+17gm8CrQDEwyd2XRFW+iOSuNm3aUFZWljWJwN0pKytLya2jkT4s5u6TgclRliki0rNnT0pLS9m4cWON6eXl5Wm9B/9gJRJXmzZt6NmzZ5PLysonhkVEqsvPz+foehoTKyoq4tRTT40hogOLMq6sbDtIREQSoyQgIpLDlARERHJYZE8MJ8vMNgJrmrCJLsCmFIWTSoorOYorOYorOdkYVy93b7hp0loyNgk0lZnN9mQenY6I4kqO4kqO4kqO4lJ1kIhITlMSEBHJYdmcBB6PO4AGKK7kKK7kKK7k5HxcWXtNQEREGpfNZwIiItIIJQERkVyWTOcD6R6AkcAyoAS4tZ75rYEXwvkzgd7V5t0WTl8GjGhsm8DR4TZKwm22aqiMiOOaEE5fDPwayA+nDwW2APPD4fsRx/U0sLpa+QPD6QY8FC6/EDgt4rjeqBbTB8CfIt5fvwY2AItrbasT8BqwInztGPH+aiiu+4ClYdkvAYeF03sDO6vtr8cijutOgv5Fqsq/qKFtRRzXC9VieheYH9X+Iuh/ZRpBF7xLgP85mO9Xo8fdph64UzUAecBK4BigFbAA6Fdrma8Dj4XjXwBeCMf7hcu3Jji4rwy31+A2gUnAF8Lxx4CvNVDGpIjjuij8QxrwfLW4hgIvx7i/ngZG1/N3uwh4JYz3kwRf7sjiqrXdPwDXRrW/wnnnEBzIax88fkp4IABuBX4S1f5qJK4LgJbh+E+qxdW7+rIx7K87ge/U8zetb1uRxVVru/cD349qfwE9CA/iQDtgOfv/HxP+fjV27M2k6qB9HdG7+26gqiP66j4HPBOOvwgMNzMLp090913uvpogC57R0DbDdc4Nt0G4zVENlHFBVHFB0Ny2h4BZBD2wxbq/Gii/ehm/DUP+N3A4sDbquMysPcHf9E8R7i/c/XXgowb2S9W2an+/0r2/GozL3f/uQd8eAP8m2u/XgfZXQ2pvayOwMeq4wvXHEPwwq0/K95e7r3P3uWF82wj6YTmynm0d6Pt1mJn1aOhzQWZdEzgSeK/a+1L2f+A6y4Rf5C1A5wOs29D0zsDmav8M1cuqXUY5wWliFHHtY2b5BP0wT6k2+UwzW2BmrwCDG9tGGuL6kZktNLNfmFnr2mWEtoRDlHFB8E8w1d23VpuW7v11IN3dfV04vh7oXruMUDr2V6KuJ/jVWOVoM5tnZv8Chiew7VTH9c3w+/VrM+tYu4zQx8D2iOMCOBv40N1XVJsW2f4ys97AqQRnjpD496vRz5hJSUBqGg+87u5vhO/nErQJcgrwS+CWiOO5DTgBOJ2gPjLq8htzBTV/pcW9v/YJz+o8rvLrY2a3A3sJrkEBrAM+4e6nAjcDNwH5EYb0KHAsMDCM5f4Iy05E7e9XZPvLzNoSVHXeVOtHDtD071cmJYFEOqLft4yZtQQ6AGUHWLeh6WUEp0kta02vr4w2QLeI4iLcxg+ArgRfLgDcfau7bw/Hq3pnOyaquMJTU3f3XcBvCE+j61mnQzhEEle4jS5hPH+rmhbR/jqQD6tOw8PXqrPJKPbXAZnZF4FLgKvCAwhhVURZOD4HWAv0iSoud//Q3SvcvRJ4goa/X4cCbaOKq9o2LiO4qFsVbyT7K6wR+AMwwd3/WG2ZRL9fjX9Gb8LF3FQOBL2crSK4MFJ1YeWkWst8g1oXbcPxk6h5YWUVwYWVBrcJ/J6aF4a/3kAZv484rhuBN4GCWmUczv6H+84g+NJFGVeP8NWAB4Afh+8vpuaFqFlRxhWu91Xgmaj3V7X1elP/XTjVL9z9NKr91UhcIwnuNulaa3pX9l8kPYbgwPFuhHH1qDb+vwR15A1tK7L9VW2f/Svq/RV+R34LPFBPTAl/vxo99qbiAJ6qgeDK9nKCq+O3h9PuAj4bjrchOCiXEPzzHFNt3dvD9ZYBFx5om9X+cLPCbf0eaN1QGRHHtTecNj8cqu5G+CbBbWILCC7ofSriuP4JLCK4dfVZoG043YBHwuUXAYOijCucVwSMrDUtqv31PEHVwB6C+tcbwumdgakEt/D9A+gU8f5qKK4Sgjrj+eFQdVD6fLi/5hNUpX0m4rh+F+6PhcBfqJkUamwryrjCeU8DX631/Ur7/gLOIqjmWUitW2dJ4vvV2HFXzUaIiOSwTLomICIiEVMSEBHJYUoCIiI5TElARCSHKQmIiOQwJQERkRymJCAiksOUBKRZMbPOZjY/HNab2fvV3reKO76DYWa9zWynmc0/wDIF4WfcHTaTIZISLRtfRCRzeNBey0AAM7sT2O7uP4szphRZ6e4DG5rp7juBgWb2bmQRSU7QmYBkFTO72sxmhb+af2VmeeEv7aVm9rSZLTezCWZ2npnNMLMVZnZGuG7VchPMrNjMXjSzQ8zsUDP7W9gs9WIzuzyJcovN7AkzW2JmfzezggQ/x3VmNidsWnl6qveTSBUlAckaZnYicDkwJPxVXQFcFc4+jqB54hPC4UqCtlm+A3y32mb6AuPd/URgK0FvUCOBD9z9FHfvT80+Hhor93jgEXc/CdhM0OZMY5+jHUHT12e6+8kELX6KpIWSgGST4UAh8HZYvz6c/c1Hr3b3RR40VbyEoAMaJ2hkq3e1bbzn7jPC8WcJEsUi4Hwz+4mZne3u1TuBSaTc+eH4nFplNaQCKADuN7NB7r45gXVEDoquCUg2MYImpW+rMTHolWlXtUmV1d5XUvP/oHaLiu7uy83sNIJWIu82s6nuftdBlFt1cD8gd99hZv0JWqZ83MyedPfxja0ncjB0JiDZZCow2sy6AZhZJzPrleQ2PmFmZ4bjVwLTzewIYIe7P0vQjvtpaSh3HzM73t0/dveJwMsETRCLpIXOBCRruPs7ZnYH8Hcza0HQNvw3CPpgTdQy4Btm9muCzlceJehf9j4zqwy3+bU0lFvd7WEi+pig6urLB7kdkUapPwGRUFh983J48Tcjyw1vER3k7pvSHZfkBlUHicSvAuiQyMNiBJ2ZV0YUl+QAnQmIiOQwnQmIiOQwJQERkRymJCAiksOUBEREcpiSgIhIDlMSEBHJYUoCIiI57P8DUFrld/ohPXEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "tmin = 0.0\n", "tmax = 0.002\n", "\n", "tau = 1/(2*np.pi*fc)\n", "\n", "t = np.linspace(tmin,tmax,1000)\n", "\n", "E = 5.0\n", "\n", "s = E*(1 - np.exp(-t/tau))\n", "\n", "plt.figure()\n", "plt.plot([tmin,tmax],[E,E],'r--',label='e(t)')\n", "plt.plot(t,s,'b-',label='s(t)')\n", "plt.grid(True)\n", "plt.xlabel('Temps en $[s]$')\n", "plt.ylabel('Tension en $[V]$')\n", "plt.legend(loc = 'best')\n", "plt.show()\n", "plt.close()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La méthode d'Euler explicite est un algorithme permettant de résoudre une équation différentiel d'ordre 1 en exploitant la définition de la dérivée d'une fonction en un point. \n", "En un point $t = a$ :\n", "$$ \\frac{ds}{dt}(t=a) = \\lim_{dt\\rightarrow 0}\\frac{s(a+dt) - s(a)}{dt}$$\n", "\n", "A la fin on veut pouvoir tracer le graphe de $s(t)$ fonction de $t$. Identifions alors la nature numérique des différents objets :\n", "1. $s(t)$ est une liste de `float` dont les éléments sont notés `s[i]`.\n", "2. $t$ est également une liste de `float`dont les éléments sont noté `t[i]`.\n", "3. $dt$ est un `float` choisi et tel que `dt = t[i+1] - t[i]`.\n", "4. $e(t)$ est une liste de `float`dont les éléments sont notés `e[i]`. \n", "5. $\\tau$ et $H_0$ sont des `float`.\n", "\n", "L'algorithme d'Euler explicite consiste alors à donner une écriture approché de l'équation différentielle sous la forme : \n", "$$ \\frac{s[i+1] - s[i]}{dt} + \\frac{s[i]}{\\tau} = \\frac{H_0.e[i]}{\\tau}$$\n", "Numériquement cette approximation est d'autant plus fidèle que $dt$ est petit. Cependant cela augmente la durée du calcul numérique." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Revenons à l'équation différentielle. Celle-ci peut s'écrire sous la forme : \n", "$$ \\dfrac{ds}{dt} = \\dfrac{1}{\\tau}(H_0.e - s) = f(e,s)$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Ecrire une fonction `Ordre_un` prenant en arguement deux listes et deux réels et retournant la fonction $f(e,s)$ définie ci-dessus." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def Ordre_un()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2. Ecrire une fonction `Euler_exp` prenant en argument deux listes, ainsi que l'ensemble des paramètres permettant de mettre en oeuvre l'algorithme d'Euler explicite et retournant une liste de date et `s[i]`. Vous utiliserez une boucle `while` pour programmer la méthode d'Euler." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3. Créer une liste `e[i]` contenant $100$ valeurs et permettant de représenter $e(t)$ sous forme d'un échelon de tension $E = 5,0 \\; V$." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "4. Ecrire un code permettant de représenter sur un même graphe $e(t)$ et $s(t)$ déterminé par la méthode d'Euler pour `N = 100`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEOCAYAAAB1g0unAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUaElEQVR4nO3df7DddX3n8eeLX42tEVsI3S4Bw05jhEVXKAsy4np3wU5g2+CMrQXXERjWzLjidNbqLF1d6+C2M67VztqBarpV20ql1K5tpqTFGZZbBiuIFEUJPzaFFi7aASOyRoz8yHv/ON/0XC/JvZ+T3PO95+Y+HzNncr7nfM73+857bvK63+/3fL+fVBWSJLU4bKkLkCQtH4aGJKmZoSFJamZoSJKaGRqSpGaGhiSpWW+hkeQTSR5L8vX9vJ8kH02yI8ndSU7vqzZJUps+9zQ+BWyc5/3zgfXdYzPwOz3UJEkaQW+hUVW3AN+eZ8iFwB/UwG3Ai5P8VD/VSZJaHLHUBcxyPPDIrOWZ7rVvzh2YZDODvRFWrVr1MyeeeGIvBU66PXv2cNhhnqYCezGbvRiyF0MPPPDAt6pqzaifm6TQaFZVW4AtABs2bKj7779/iSuaDNPT00xNTS11GRPBXgzZiyF7MZTkHw7kc5MUuY8CJ8xaXtu9JkmaEJMUGluBt3TfonoV8GRVPe/QlCRp6fR2eCrJZ4Ap4NgkM8CvAUcCVNXHgG3ABcAO4Cngsr5qkyS16S00quriBd4v4O09lSNJh4xnnnmGmZkZdu/e/bz3Vq1axdq1aznyyCMXZVvL8kS4JGloZmaG1atXs27dOpL80+tVxc6dO5mZmeGkk05alG1N0jkNSdIB2L17N8ccc8wPBQZAEo455ph97oEcKENDkg4BcwNjodcPlKEhSWpmaEiSmhkaknQIGHwBtf31A2VoSNIyt2rVKnbu3Pm8gNj77alVq1Yt2rb8yq0kLXNr165lZmaGxx9//Hnv7b1OY7EYGpK0zB155JGLdh3GQjw8JUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpr1GhpJNia5P8mOJFfu4/0Tk9yc5K4kdye5oM/6JEnz6y00khwOXA2cD5wCXJzklDnD3gtcX1WnARcB1/RVnyRpYX3uaZwJ7KiqB6vqaeA64MI5Ywp4Uff8aOAbPdYnSVrAET1u63jgkVnLM8BZc8a8H/h8kncAPwact68VJdkMbAZYs2YN09PTi13rsrRr1y570bEXQ/ZiyF4cvD5Do8XFwKeq6sNJzgb+MMmpVbVn9qCq2gJsAdiwYUNNTU31X+kEmp6exl4M2IshezFkLw5en4enHgVOmLW8tntttsuB6wGq6ovAKuDYXqqTJC2oz9C4A1if5KQkRzE40b11zpiHgXMBkpzMIDQe77FGSdI8eguNqnoWuAK4EbiXwbek7klyVZJN3bBfAd6a5KvAZ4BLq6r6qlGSNL9ez2lU1TZg25zX3jfr+Xbg1X3WJElq5xXhkqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmRyw0IMlPNKxnT1V95+DLkSRNsgVDA/hG98g8Yw4HTlyUiiRJE6slNO6tqtPmG5DkrkWqR5I0wVrOabypYczZB1uIJGnytYTGDUk+mWS/h5+qavci1iRJmlAtofEy4G+Bv07yP5OsGXNNkqQJtWBoVNXTVfXbwMnAI8CXknwgyYvGXp0kaaI0X6dRVbur6jeBU4HvA3cmedfYKpMkTZzm0EiyLslG4D8y+Hrtd4HfGFdhkqTJs2BoJLk7yU7gc8AlwNHATcBbgBeOsrEkG5Pcn2RHkiv3M+aNSbYnuSfJH42yfknSeLVcp/F64KGqqoPZUJLDgauB1wEzwB1JtlbV9llj1gO/Cry6qp5IctzBbFOStLhaToQ/eLCB0TkT2NGt72ngOuDCOWPeClxdVU90235sEbYrSVokLfee+tuqOv1gxwDHM/j21V4zwFlzxry0W98XGNya5P1V9Vf72N5mYDPAmjVrmJ6eXmDTK8OuXbvsRcdeDNmLIXtx8FoOT52c5O553g+D8xyLVc96YApYC9yS5OVzb4ZYVVuALQAbNmyoqampRdr88jY9PY29GLAXQ/ZiyF4cvJbQeFnDmOcaxjwKnDBreW332mwzwO1V9QzwUJIHGITIHQ3rlySN2YKhUVX/sEjbugNYn+QkBmFxEc+/r9WfARcDn0xyLIPDVQ8u0vYlSQept0mYqupZ4ArgRuBe4PqquifJVUk2dcNuBHYm2Q7cDLy7qnb2VaMkaX4th6cWTVVtA7bNee19s54X8M7uIUmaMM2hkeRHgDcA62Z/rqquWvyyJEmTaJQ9jT8HngTuBH4wnnIkSZNslNBYW1Ubx1aJJGnijXIi/G+SvHxslUiSJt4oexrnAJcleZDB4akwOHf9irFUJkmaOKOExvljq0KStCyMcnjqYeA1wCXdBX8F/ORYqpIkTaRRQuMa4GwGV2zDYBKmqxe9IknSxBrl8NRZVXV6krsAuvkujhpTXZKkCTTKnsYz3URKBZBkDbBnLFVJkibSKKHxUQZTvh6X5NeBW3GOcElaUZoPT1XVtUnuBM5l8HXb11fVvWOrTJI0cUa6YWFV3QfcN6ZaJEkTrrdbo0uSlj9DQ5LUzNCQJDVzPg1JUjPn05AkNXM+DUlSM+fTkCQ1G3U+jUuTPITzaUjSiuR8GpKkZs2Hp7o5NF4M/Hz3eHH3miRphWgOjSS/DFwLHNc9Pp3kHeMqTJI0eUY5PHU5gzk1vgeQ5IPAF4HfHkdhkqTJM8q3pwI8N2v5ue41SdIKMcqexieB25N8rlt+PfB7i16RJGlijTKfxkeS/DXw6u6ly6rqrvGUJUmaRKPOp3Eng9uISJJWoAVDI8mtVXVOku/SzQ++9y0GF/e9aGzVSZImyoKhUVXndH+uHn85kqRJNsp1Gr+YZHX3/L1J/neS08ZXmiRp0ozyldv/VlXfTXIOcB6Db059bDxlSZIm0SihsfcajX8PbKmqG4CjFr8kSdKkGiU0Hk3yceAiYFs3k5/TxUrSCjLKf/pvBG4EfraqvgP8OPDuUTaWZGOS+5PsSHLlPOPekKSSnDHK+iVJ4zXKdRrPAauAX0wy+3Ofb/lwksOBq4HXATPAHUm2VtX2OeNWA78M3D5CbZKkHoyyp/HnwCbgWeB7sx6tzgR2VNWDVfU0cB1w4T7GfQD4ILB7hHVLknrQ5xzhxwOPzFqeAc6aPSDJ6cAJVXVDkv0e+kqyGdgMsGbNGqanpw+irEPHrl277EXHXgzZiyF7cfBGCY2/SfLyqvraOApJchjwEeDShcZW1RZgC8CGDRtqampqHCUtO9PT09iLAXsxZC+G7MXBG3WO8MuSPMiBzRH+KHDCrOW13Wt7rQZOBaaTAPwzYGuSTVX15RHqlCSNSZ9zhN8BrE9yEoOwuAh40943q+pJ4Ni9y0mmgXcZGJI0OUY5Ef4w8Brgkm5u8AJ+svXDVfUscAWDr+3eC1xfVfckuSrJphHqkCQtkVH2NK4B9gD/DrgK+C7wp8C/bl1BVW0Dts157X37GTs1Qm2SpB6MEhpnVdXpSe4CqKonkngbEUlaQUY5PPVMd4FeASRZw2DPQ5K0QowSGh8FPgccl+TXgVuB3xhLVZKkidQyc98RVfVsVV2b5E7gXAZft319Vd079golSROj5ZzGl4DTAarqPuC+sVYkSZpYLYenMvYqJEnLQsuexpok79zfm1X1kUWsR5I0wVpC43DghbjHIUkrXktofLOqrhp7JZKkiec5DUlSs5bQOHfsVUiSloUFQ6Oqvt1HIZKkyTfKFeGSpBXO0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ16zU0kmxMcn+SHUmu3Mf770yyPcndSW5K8pI+65Mkza+30EhyOHA1cD5wCnBxklPmDLsLOKOqXgF8FvgffdUnSVpYn3saZwI7qurBqnoauA64cPaAqrq5qp7qFm8D1vZYnyRpAUf0uK3jgUdmLc8AZ80z/nLgL/f1RpLNwGaANWvWMD09vUglLm+7du2yFx17MWQvhuzFweszNJoleTNwBvDafb1fVVuALQAbNmyoqamp/oqbYNPT09iLAXsxZC+G7MXB6zM0HgVOmLW8tnvthyQ5D3gP8Nqq+kFPtUmSGvR5TuMOYH2Sk5IcBVwEbJ09IMlpwMeBTVX1WI+1SZIa9BYaVfUscAVwI3AvcH1V3ZPkqiSbumEfAl4I/EmSryTZup/VSZKWQK/nNKpqG7Btzmvvm/X8vD7rkSSNxivCJUnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktSs19BIsjHJ/Ul2JLlyH+//SJI/7t6/Pcm6PuuTJM2vt9BIcjhwNXA+cApwcZJT5gy7HHiiqn4a+C3gg33VJ0laWJ97GmcCO6rqwap6GrgOuHDOmAuB3++efxY4N0l6rFGSNI8jetzW8cAjs5ZngLP2N6aqnk3yJHAM8K3Zg5JsBjZ3iz9I8vWxVLz8HMucXq1g9mLIXgzZi6ENB/KhPkNj0VTVFmALQJIvV9UZS1zSRLAXQ/ZiyF4M2YuhJF8+kM/1eXjqUeCEWctru9f2OSbJEcDRwM5eqpMkLajP0LgDWJ/kpCRHARcBW+eM2Qpc0j3/BeD/VFX1WKMkaR69HZ7qzlFcAdwIHA58oqruSXIV8OWq2gr8HvCHSXYA32YQLAvZMrailx97MWQvhuzFkL0YOqBexF/kJUmtvCJcktTM0JAkNVs2oeEtSIYaevHOJNuT3J3kpiQvWYo6+7BQL2aNe0OSSnJIft2ypQ9J3tj9XNyT5I/6rrEvDf8+Tkxyc5K7un8jFyxFnX1I8okkj+3vWrYMfLTr1d1JTl9wpVU18Q8GJ87/DvgXwFHAV4FT5oz5T8DHuucXAX+81HUvYS/+LfCj3fO3reRedONWA7cAtwFnLHXdS/QzsR64C/jxbvm4pa57CXuxBXhb9/wU4O+Xuu4x9uPfAKcDX9/P+xcAfwkEeBVw+0LrXC57Gt6CZGjBXlTVzVX1VLd4G4NrYg5FLT8XAB9gcB+z3X0W16OWPrwVuLqqngCoqsd6rrEvLb0o4EXd86OBb/RYX6+q6hYG30TdnwuBP6iB24AXJ/mp+da5XEJjX7cgOX5/Y6rqWWDvLUgONS29mO1yBr9JHIoW7EW3u31CVd3QZ2E9a/mZeCnw0iRfSHJbko29Vdevll68H3hzkhlgG/COfkqbSKP+f7I8byOiNkneDJwBvHapa1kKSQ4DPgJcusSlTIIjGByimmKw53lLkpdX1XeWsqglcjHwqar6cJKzGVwbdmpV7VnqwpaD5bKn4S1Ihlp6QZLzgPcAm6rqBz3V1reFerEaOBWYTvL3DI7Zbj0ET4a3/EzMAFur6pmqegh4gEGIHGpaenE5cD1AVX0RWMXgRoYrUdP/J7Mtl9DwFiRDC/YiyWnAxxkExqF67BoW6EVVPVlVx1bVuqpax+D8zqaqOqAbtU2wln8ff8ZgL4MkxzI4XPVgjzX2paUXDwPnAiQ5mUFoPN5rlZNjK/CW7ltUrwKerKpvzveBZXF4qsZ3C5Jlp7EXHwJeCPxJ912Ah6tq05IVPSaNvTjkNfbhRuBnk2wHngPeXVWH3J54Yy9+BfjdJP+ZwUnxSw/RXzBJ8hkGvywc253D+TXgSICq+hiDczoXADuAp4DLFlznIdorSdIYLJfDU5KkCWBoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYOSUmOSfKV7vGPSR6dtXzUUtd3IJKsS/L9JF+ZZ8wLur/j092V39KiWhZXhEuj6q52fiVAkvcDu6rqN5eypkXyd1X1yv29WVXfB17Z3WtLWnTuaWhFSvLmJF/qfiv/eJLDu9/k70vyqSQPJLk2yXnd7cT/b5Izu8/uHXdtknuTfDbJjyb5sSQ3JPlqkq8n+aURtntvkt/NYFa9zyd5QePf45Ikd3azrt262H2S5jI0tOJ0N6n7JeDV3W/tzwH/oXv7p4EPAy/rHm8CzgHeBfzXWavZAFxTVScD/4/BzJEbgW9U1b+qqlOBvxphu+sZTJL0L4HvAG9o+HusBv4LcHZVvQL4ueYmSAfI0NBKdC7wM8Ad3fmBcxlMDwrwUFV9rZtb4R7gpu5mdl8D1s1axyNV9YXu+acZBMvXgNcl+WCS11TVkyNu9yvd8zvnbGt/ngNeAHw4yRkrdG4M9cxzGlqJAvx+Vf3qD72YrANmzz2yZ9byHn7438vcO31WVT3QzRR4AfDfk9xUVVcdwHb3hsG8quqpJKcCPw9sSfK/quqahT4nHQz3NLQS3QT8QpLjAJL8RJKXjLiOE7tZ32BwCOvWJP8ceKqqPs3g9vSnj2G7/yTJ+qr6XlVdB/wFg3khpLFyT0MrTlVtT/Je4PMZTAn7DPB24B9HWM39wNuTfALYDvwO8BrgQ0n2dOt82xi2O9t7uuD6HoNDaW89wPVIzZxPQxpRdzjpL7qT3RO53e4rt2dU1bfGXZdWFg9PScvHc8DRLRf3MZidbU9PdWkFcU9DktTMPQ1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1+/8P4WSLcTgH+wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "\n", "plt.figure()\n", "\n", "plt.grid(True)\n", "plt.xlabel('Temps en $[s]$')\n", "plt.ylabel('Tension en $[V]$')\n", "plt.legend(loc='best')\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "5. Comparer la précision de la méthode d'Euler pour `N = 50`; `N = 100`; `N = 1000`et `N = 10 000`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "\n", "plt.figure()\n", "\n", "\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "6. Reprendre toute l'étude précédente pour $e(t) = 5,0.\\sin(2\\pi f t)$ avec $f = 5000 \\; Hz$." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "N = 1000\n", "t1 = np.linspace(tmin,tmax,N)\n", "\n", "\n", "\n", "\n", "plt.figure()\n", "\n", "\n", "plt.show()\n", "plt.close()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "7. Ecrire une fonction `Euler_imp` prenant en argument deux listes, ainsi que l'ensemble des paramètres permettant de mettre en oeuvre l'algorithme d'Euler implicite et retournant une liste de date et `s[i]`. Vous utiliserez une boucle `while` pour programmer la méthode d'Euler." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "def Euler_imp\n", " " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "E = 5.0\n", "N = 100\n", "e = np.linspace(E,E,N)\n", "\n", "\n", "\n", "plt.figure()\n", "\n", "\n", "plt.show()\n", "plt.close()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "8. Ecrire un algorithme permettant de comparer pour un même nombre de point d'intégration `N`la méthode d'Euler implicite, explicite et la solution reélle. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEOCAYAAACKDawAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAARF0lEQVR4nO3df6zddX3H8eeLUlZ/dLi1NXG02C7WOzt0ig1gnPMu4FLI1v6hUdiIYghNnJhlOjOcBgnuH+dwiQn+qBvB34j+YRqtYsK4IRpxYECkZWUVnVzUgBVZKiK/3vvjfPEcri33295z723v5/lITnK+3+/nfL/v+869r/O9n3PO96SqkCQtfcctdgGSpIVh4EtSIwx8SWqEgS9JjTDwJakRBr4kNWLWwE9yVZL7ktxxiO1J8qEk+5LcnuTU8ZcpSZqrPmf4VwNbnmb72cDG7rYd+Mjcy5IkjdusgV9VNwI/f5oh24BP1sBNwHOSPG9cBUqSxuP4MezjJOCekeXpbt1PZg5Msp3BfwGsWLHi5SeffPIYDn/se+KJJzjuOF9OAXsxyl4M2Yuhu+6662dVteZIHjuOwO+tqnYAOwAmJiZq7969C3n4o9bU1BSTk5OLXcZRwV4M2YshezGU5H+P9LHjeMq8F1g3sry2WydJOoqMI/B3Am/s3q1zBvBgVf3WdI4kaXHNOqWT5HPAJLA6yTTwXmA5QFV9FNgFnAPsAx4C3jxfxUqSjtysgV9V582yvYC3jq0iSWrEo48+yvT0NA8//PBvbVuxYgVr165l+fLlYzvegr5oK0kamp6eZuXKlaxfv54kv1lfVezfv5/p6Wk2bNgwtuP5PidJWiQPP/wwq1atekrYAyRh1apVBz3znwsDX5IW0cywn239XBj4ktQIA1+SGmHgS9IiGrzRsf/6uTDwJWmRrFixgv379/9WuD/5Lp0VK1aM9Xi+LVOSFsnatWuZnp7m/vvv/61tT74Pf5wMfElaJMuXLx/r++xn45SOJDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRvQK/CRbkuxNsi/JJQfZfnKSG5LcmuT2JOeMv1RJ0lzMGvhJlgFXAmcDm4DzkmyaMew9wLVV9TLgXODD4y5UkjQ3fc7wTwP2VdXdVfUIcA2wbcaYAn63u38i8OPxlShJGofje4w5CbhnZHkaOH3GmMuAryd5G/As4KyD7SjJdmA7wJo1a5iamjrMcpemAwcO2IuOvRiyF0P2Yjz6BH4f5wFXV9UVSV4BfCrJKVX1xOigqtoB7ACYmJioycnJMR3+2DY1NYW9GLAXQ/ZiyF6MR58pnXuBdSPLa7t1oy4ErgWoqm8BK4DV4yhQkjQefQL/ZmBjkg1JTmDwouzOGWN+BJwJkORFDAL//nEWKkmam1kDv6oeAy4GrgPuZPBunN1JLk+ytRv2DuCiJN8FPgdcUFU1X0VLkg5frzn8qtoF7Jqx7tKR+3uAV463NEnSOPlJW0lqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mN6BX4SbYk2ZtkX5JLDjHm9Un2JNmd5LPjLVOSNFfHzzYgyTLgSuA1wDRwc5KdVbVnZMxG4F3AK6vqgSTPna+CJUlHps8Z/mnAvqq6u6oeAa4Bts0YcxFwZVU9AFBV9423TEnSXM16hg+cBNwzsjwNnD5jzAsBknwTWAZcVlVfm7mjJNuB7QBr1qxhamrqCEpeeg4cOGAvOvZiyF4M2Yvx6BP4ffezEZgE1gI3JnlxVf1idFBV7QB2AExMTNTk5OSYDn9sm5qawl4M2IshezFkL8ajz5TOvcC6keW13bpR08DOqnq0qn4A3MXgCUCSdJToE/g3AxuTbEhyAnAusHPGmC8xOLsnyWoGUzx3j69MSdJczRr4VfUYcDFwHXAncG1V7U5yeZKt3bDrgP1J9gA3AO+sqv3zVbQk6fD1msOvql3ArhnrLh25X8Dbu5sk6SjkJ20lqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RG9Ar8JFuS7E2yL8klTzPutUkqyebxlShJGodZAz/JMuBK4GxgE3Bekk0HGbcS+Dvg2+MuUpI0d33O8E8D9lXV3VX1CHANsO0g494HvB94eIz1SZLG5PgeY04C7hlZngZOHx2Q5FRgXVV9Jck7D7WjJNuB7QBr1qxhamrqsAteig4cOGAvOvZiyF4M2Yvx6BP4TyvJccAHgQtmG1tVO4AdABMTEzU5OTnXwy8JU1NT2IsBezFkL4bsxXj0mdK5F1g3sry2W/eklcApwFSSHwJnADt94VaSji59Av9mYGOSDUlOAM4Fdj65saoerKrVVbW+qtYDNwFbq+qWealYknREZg38qnoMuBi4DrgTuLaqdie5PMnW+S5QkjQevebwq2oXsGvGuksPMXZy7mVJksbNT9pKUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJakSvwE+yJcneJPuSXHKQ7W9PsifJ7UmuT/L88ZcqSZqLWQM/yTLgSuBsYBNwXpJNM4bdCmyuqpcAXwT+ZdyFSpLmps8Z/mnAvqq6u6oeAa4Bto0OqKobquqhbvEmYO14y5QkzdXxPcacBNwzsjwNnP404y8EvnqwDUm2A9sB1qxZw9TUVL8ql7gDBw7Yi469GLIXQ/ZiPPoEfm9Jzgc2A68+2Paq2gHsAJiYmKjJyclxHv6YNTU1hb0YsBdD9mLIXoxHn8C/F1g3sry2W/cUSc4C3g28uqp+PZ7yJEnj0mcO/2ZgY5INSU4AzgV2jg5I8jLgY8DWqrpv/GVKkuZq1sCvqseAi4HrgDuBa6tqd5LLk2zthn0AeDbwhSS3Jdl5iN1JkhZJrzn8qtoF7Jqx7tKR+2eNuS5J0pj5SVtJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRvQI/yZYke5PsS3LJQbb/TpLPd9u/nWT92CuVJM3JrIGfZBlwJXA2sAk4L8mmGcMuBB6oqhcA/wa8f9yFSpLmps8Z/mnAvqq6u6oeAa4Bts0Ysw34RHf/i8CZSTK+MiVJc3V8jzEnAfeMLE8Dpx9qTFU9luRBYBXws9FBSbYD27vFXye540iKXoJWM6NXDbMXQ/ZiyF4MTRzpA/sE/thU1Q5gB0CSW6pq80Ie/2hlL4bsxZC9GLIXQ0luOdLH9pnSuRdYN7K8tlt30DFJjgdOBPYfaVGSpPHrE/g3AxuTbEhyAnAusHPGmJ3Am7r7rwP+s6pqfGVKkuZq1imdbk7+YuA6YBlwVVXtTnI5cEtV7QT+A/hUkn3Azxk8KcxmxxzqXmrsxZC9GLIXQ/Zi6Ih7EU/EJakNftJWkhph4EtSI+Y98L0sw1CPXrw9yZ4ktye5PsnzF6POhTBbL0bGvTZJJVmyb8nr04skr+9+N3Yn+exC17hQevyNnJzkhiS3dn8n5yxGnfMtyVVJ7jvUZ5Uy8KGuT7cnObXXjqtq3m4MXuT9PvCHwAnAd4FNM8b8LfDR7v65wOfns6bFuvXsxZ8Dz+zuv6XlXnTjVgI3AjcBmxe77kX8vdgI3Ar8Xrf83MWuexF7sQN4S3d/E/DDxa57nnrxZ8CpwB2H2H4O8FUgwBnAt/vsd77P8L0sw9CsvaiqG6rqoW7xJgafeViK+vxeALyPwXWZHl7I4hZYn15cBFxZVQ8AVNV9C1zjQunTiwJ+t7t/IvDjBaxvwVTVjQze8Xgo24BP1sBNwHOSPG+2/c534B/ssgwnHWpMVT0GPHlZhqWmTy9GXcjgGXwpmrUX3b+o66rqKwtZ2CLo83vxQuCFSb6Z5KYkWxasuoXVpxeXAecnmQZ2AW9bmNKOOoebJ8ACX1pB/SQ5H9gMvHqxa1kMSY4DPghcsMilHC2OZzCtM8ngv74bk7y4qn6xmEUtkvOAq6vqiiSvYPD5n1Oq6onFLuxYMN9n+F6WYahPL0hyFvBuYGtV/XqBaltos/ViJXAKMJXkhwzmKHcu0Rdu+/xeTAM7q+rRqvoBcBeDJ4Clpk8vLgSuBaiqbwErGFxYrTW98mSm+Q58L8swNGsvkrwM+BiDsF+q87QwSy+q6sGqWl1V66tqPYPXM7ZW1RFfNOoo1udv5EsMzu5JsprBFM/dC1jjQunTix8BZwIkeRGDwL9/Qas8OuwE3ti9W+cM4MGq+slsD5rXKZ2av8syHHN69uIDwLOBL3SvW/+oqrYuWtHzpGcvmtCzF9cBf5FkD/A48M6qWnL/BffsxTuAjyf5ewYv4F6wFE8Qk3yOwZP86u71ivcCywGq6qMMXr84B9gHPAS8udd+l2CvJEkH4SdtJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIGvo0qSVUlu624/TXLvyPIJi13fkUiyPsmvktz2NGOe0f2Mj3SfppXGzoun6ajSfYL0pQBJLgMOVNW/LmZNY/L9qnrpoTZW1a+Al3bXDpLmhWf4OqYkOT/Jf3Vnwx9Lsqw7g/7vJFcnuSvJZ5Kc1V1O+H+SnNY99slxn0lyZ5IvJnlmkmcl+UqS7ya5I8kbDuO4dyb5eAbfRPX1JM/o+XO8Kcl3um8r+sa4+yQdjIGvY0Z3saw3AK/szpYfB/6m2/wC4Argj7rbXwN/CvwD8E8ju5kAPlxVLwL+j8E3rm0BflxVf1JVpwBfO4zjbmTw5SR/DPwCeG2Pn2Ml8I/AK6rqJcBf9m6CNAcGvo4lZwIvB27u5sPPZPB1eAA/qKrvdddF3w1c311U63vA+pF93FNV3+zuf5rBk8L3gNckeX+SV1XVg4d53Nu6+9+ZcaxDeRx4BnBFks2NXtdei8A5fB1LAnyiqt71lJWDL74f/e6AJ0aWn+Cpv+czrxZYVXVX9w1b5wD/nOT6qrr8CI77ZJA/rap6KMkpwF8BO5L8e1V9eLbHSXPlGb6OJdcDr0vyXIAkv5/k+Ye5j5O7b0qCwbTPN5L8AfBQVX2awSWqT52H4/5Gko1V9cuqugb4MoNrukvzzjN8HTOqak+S9wBfz+BrEB8F3gr89DB2sxd4a5KrgD3AR4BXAR9I8kS3z7fMw3FHvbt70vklg+mni45wP9Jh8Xr4akY3BfPl7oXZo/K43dsyN1fVz+a7LrXHKR1p/j0OnNjng1cMvtXIL+TWvPAMX5Ia4Rm+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mN+H+/kQZ12zJaPgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "N = 1000\n", "\n", "\n", "\n", "plt.figure()\n", "\n", "\n", "plt.grid(True)\n", "plt.xlabel('Temps en $[s]$') \n", "plt.legend(loc='best')\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## II- Application au filtrage passe-bas.\n", "\n", "### A- Etude de la fonction de transfert\n", "\n", " Un filtre passe-bas peut être représenter par sa fonction de transfert harmonique : " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " $$\\underline{H} =\\frac{H_0}{1+j\\frac{\\omega}{\\omega_c}}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On propose dans un premier temps de réaliser un petit programme permettant de tracer le diagramme de Bode d'un tel filtre pour : $f_c = 1000 \\; Hz$ et $H_0 = 1$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "7. Construire une liste de $N = 100000$ valeurs de fréquences $f$ comprises entre $f_{min} = 10 \\; Hz$ et $f_{max} = 100000 \\; Hz$. " ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "8. Utiliser la liste `f=np.linspace(fmin,fmax,N)` ainsi créée pour construire la liste des valeurs complexes de $\\underline{H}$.\n", "On rappelle que l'imaginaire pur s'écrit `1j`." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "9. Utiliser la fonctions `np.abs()` pour calculer la liste des modules de la fonction de transfert. Utiliser les fonctions trigonométrique du module `numpy`pour calculer la liste des phases. " ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "10. En vous appuyant sur le code suivant réaliser une représentation graphique du diagramme de Bode du filtre passe-bas définit plus haut. Vous commenterez chaque ligne du code suivant en indiquant leur utilité. " ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEMCAYAAADj8ECOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaCUlEQVR4nO3de7RcZ3nf8e+vsrCoZAiWhEosQCI4YLsQ4Ch2WA0sq+Ziuigm2A52KVGoiUqLV1hh8YedcEkdnIaElaYpEDAyQVyCcWwuSjExBkulKTdb4IIvGAtRwnEgyLK5yEW+6ekfs1WPj8+RZubsOTNz9P2sNUuz937fZz97jr2ftfe7L6kqJEmar38y6gQkSYuDBUWS1AoLiiSpFRYUSVIrLCiSpFZYUCRJrThq1AmM0qpVq2r16tUsX76877533333QP00mMX4e4/rNo0qr2Gvt+34bcWbT5xB+8439507d95RVasftqCqxuYDnA7cCuwCLphl+dHAR5vlXwbWNfPXAT8Dbmg+7+5lfVNTU7V9+/YaxKD9NJjF+HuP6zaNKq9hr7ft+G3Fm0+cUe2/gOtrln3q2ByhJFkCvBN4PjANXJdkW1Xd3NXsPOCuqnpyknOAtwEvb5Z9u6qesZA5S5IeNE5jKCcDu6pqd1XdC1wGnDGjzRnA1ub7FcBpSbKAOUqS5pAak0evJDkLOL2qXt1MvxI4parO72pzY9Nmupn+NnAKsAK4CfgW8BPgjVX1P+dYz2ZgM8CaNWumtmzZwooVK/rOd9++fQP102AW4+89rts0qryGvd6247cVbz5xBu0739w3bty4s6o2zJw/Nqe85un7wBOqam+SKeATSU6qqp/MbFhVlwCXAGzYsKFWrFjBqaee2vcKd+zYMVA/DWYx/t7juk2jymvY6207flvx5hNn0L7d/e677z6mp6fZv3//w9otW7aMtWvXsnTp0p7ijlNBuR14fNf02mbebG2mkxwFPBrY2wwS3QNQVTubI5dfBK4fetaSNMGmp6c55phjWLduHd0jCFXF3r17mZ6eZv369T3FGqcxlOuA45OsT/II4Bxg24w224BNzfezgGurqpKsbgb1SfIk4Hhg9wLlLUkTa//+/axcuZKZw9FJWLly5axHLnMZmyOUqro/yfnA1cAS4H1VdVOSi+hcorYNuBT4YJJdwJ10ig7Ac4GLktwHHABeU1V3LvxWSNLkmevapn6veRqbggJQVVcBV82Y9+au7/uBs2fpdyVw5dATlCTNaZxOeUmSJpgFRZKOcHPdPtLvbSUWFEk6gi1btoy9e/c+rHgcvMpr2bJlPccaqzEUSdLCWrt2LdPT0+zZs+dhyw7eh9IrC4okHcGWLl3a830mh+MpL0lSKywokqRWWFAkSa2woEiSWmFBkSS1woIiSWqFBUWS1IrD3oeS5Nge4hyoqh/NPx1J0qTq5cbGf2g+h3qO8RLgCa1kJEmaSL0UlFuq6pmHapDkay3lI0maUL2MoTy7pTaSpEXssAWleanVQyRZla5Xec3WRpJ0ZDlsQUnyK0l2JPlYkmcmuRG4EfjHJKcPP0VJ0iToZQzlHcDvAo8GrgVeVFVfSvJU4CPA3w4xP0nShOhlDOWoqvpMVf018IOq+hJAVX1zuKlJkiZJLwXlQNf3n81Y1t/7ISVJi1Yvp7x+KclP6NyH8sgkP6VTSAL0/m5ISdKidtiCUlVLFiIRSdJk6+XRK68/1PKq+tP20pEkTapeTnkd0/z7FOCXgW3N9L8GvjKMpCRJk6eXU17/CSDJ54FnVdVPm+nfBz411OwkSROjn8fXrwHu7Zq+t5knSVJPp7wO+gDwlSQfb6ZfCry/7YQkSZOp54JSVRcn+TTwnGbWq6rKpwxLkoD+jlCoqq8CXx1SLpKkCdbLwyEPW0B6aSNJWtx6OUI5IcnXD7E8dB4cKUk6gvVSUJ7aQ5sH5puIJGmy9XIfyncXIhFJ0mTr5z4USZLmZEGRJLVirApKktOT3JpkV5ILZll+dJKPNsu/nGRd17ILm/m3JnnhgiYuSer9PpQkRwNnAuu6+1XVRW0kkmQJ8E7g+cA0cF2SbVV1c1ez84C7qurJSc4B3ga8PMmJwDnAScDPA59N8otV5cUCkrRA+jlC+SRwBnA/cHfXpy0nA7uqandV3Qtc1qyv2xnA1ub7FcBpSdLMv6yq7qmq7wC7mniSpAWSqt7e4pvkxqr650NLJDkLOL2qXt1MvxI4parO786haTPdTH8bOAX4feBLVfWhZv6lwKer6opZ1rMZ2AywZs2aqS1btrBixYq+8923b99A/TSYxfh7j+s2jSqvYa+37fhtxZtPnEH7zjf3jRs37qyqDTPn9/PolS8keVpVfWPgLMZAVV0CXAKwYcOGWrFiBaeeemrfcXbs2DFQPw1mMf7e47pNo8pr2OttO35b8eYTZ9C+w/qt+ykovwq8Kslu4B46d8hXVT29pVxuBx7fNb22mTdbm+kkR9G5Q39vj30lSUPUT0F50dCy6LgOOD7JejrF4Bzg38xosw3YBHwROAu4tqoqyTbgr5L8KZ1B+ePxbZKStKD6GZT/ezqPrt/U3D1ftPiCraq6HzgfuBq4Bbi8qm5KclGSlzTNLgVWJtkFvB64oOl7E3A5cDPwt8BrvcJLkhZWP0co7wIOAP8SuAj4KXAlnffMt6KqrgKumjHvzV3f9wNnz9H3YuDitnKRJPWnn4JySlU9K8nXAKrqriSPGFJekqQJ088pr/uamw8LIMlqOkcskiT1VVD+HPg48NgkFwN/B/zhULKSJE2cft4p/+EkO4HT6Fwy/NKqumVomUmSJkq/75T/JvDNIeUiSZpgY/W0YUnS5LKgSJJa0XdBSXJCkuc33x/ZfkqSpEk0yBHKfwNOSvJx4ANJWnkfiiRpsg1SUG6uqj8Dvl9VZwPHtpuSJGkSDVJQnp3kHcCTkzyNziXEkqQjXF+XDQNU1S8nWQtM0Xmu1rq2k5IkTZ6+C0qSVwDXVdUn6bwWWJKk/gsKsAd4V/NgyDuAb1XVBe2mJUmaNH2PoVTVZ4AvV9Vz6bzsavxeii1JWnCD3tj4qCRTdF4FvLzFfCRJE+qwBSXJsUl+fsbs1wP/Ang3nTckSpKOcL2MobwduA34zwBJvgBMA18F3lRVtw8vPUnSpOjllNcU8Edd08fQebf7KuDCYSQlSZo8vRyh3FNV1TV9bVVdneQzwBeHlJckacL0coSyP8kTD05U1euafwtYOqzEJEmTpZeCcjHwiSRP7Z6Z5HEMdh+LJGkROmxBaE5vPQrYnuQG4MZm0ZnA7w0xN0nSBOnpCKOq/jrJp4B/BZwE/Az4tar638NMTpI0OXo+ZVVV/xe4ovlIkvQQvgJYktQKC4okqRUWFElSKywokqRWWFAkSa2woEiSWmFBkSS1woIiSWqFBUWS1AoLiiSpFRYUSVIrxqKgNO+tvybJbc2/j5mj3aamzW1JNnXN35Hk1iQ3NJ/HLlz2kiQYk4ICXAB8rqqOBz7XTD9EkmOBtwCnACcDb5lReF5RVc9oPj9ciKQlSQ8al4JyBrC1+b4VeOksbV4IXFNVd1bVXcA1wOkLk54k6XDy0NfFjyiJ5EdV9XPN9wB3HZzuavMGYFlVvbWZfhPws6p6e5IdwErgAeBK4K01x4Yl2QxsBlizZs3Uli1bWLFiRd8579u3b6B+Gsxi/L3HdZtGldew19t2/LbizSfOoH3nm/vGjRt3VtWGhy2oqgX5AJ+l87bHmZ8zgB/NaHvXLP3fALyxa/pNwBua78c1/x4DfAb4jV5ympqaqu3bt9cgBu2nwSzG33tct2lUeQ17vW3HbyvefOKMav8FXF+z7FMX7J3wVfW8uZYl+cckj6uq7zfvqp9tDOR24NSu6bXAjib27c2/P03yV3TGWD7QUuqSpB6MyxjKNuDgVVubgE/O0uZq4AVJHtMMxr8AuDrJUUlWASRZCryYB997L0laIOMyhrISuBx4AvBd4Ner6s4kG4DXVNWrm3b/DvjdptvFVfWXSZYDnweWAkvonFp7fVU90MN69wA/An48QNqrgDsG6KfBPJrB/k7jbFy3aVR5DXu9bcdvK9584gzad777rydW1eqZM8eioIxSkkuqavMA/a6v2QalNBSD/p3G2bhu06jyGvZ6247fVrz5xBm3/de4nPIapb8ZdQLqyWL8O43rNo0qr2Gvt+34bcWbT5yx+m/oiD9CGZRHKJImlUco4+eSUScgSQMayv7LIxRJUis8QpEktcKCIklqhQVFktQKC4okqRUWlJYkWZ5ka5L3JnnFqPORpF4leVKSS5NcMZ84FpRDSPK+JD9McuOM+ac3b4jcleTgy8BeBlxRVb8FvGTBk5WkLv3sv6pqd1WdN991WlAO7f3MeIlXkiXAO4EXAScC5yY5kc7Tj7/XNDvsc8QkacjeT+/7r1ZYUA6hqj4P3Dlj9snArqai3wtcRuedLtN0igr4u0oasT73X61wx9e/43jwSAQ6heQ44GPAmUn+gjF7vo4kNWbdfyVZmeTdwDOTXDho8AV7wdZiV1V3A68adR6S1K+q2gu8Zr5xPELp3+3A47um1zbzJGncDXX/ZUHp33XA8UnWJ3kEcA6dN05K0rgb6v7LgnIIST4CfBF4SpLpJOdV1f3A+XReSXwLcHlV3TTKPCVpplHsv3zasCSpFUf0oPyqVatq9erVLF++vO++d99990D9NJjF+HuP6zaNKq9hr7ft+G3Fm0+cQfvON/edO3feMds75amqsfnQuQnnVmAXcMEsy48GPtos/zKwrpm/DvgZcEPzeXcv65uamqrt27fXIAbtp8Esxt97XLdpVHkNe71tx28r3nzijGr/BVxfs+xTx+YIpesOzufTuTb6uiTbqurmrmbnAXdV1ZOTnAO8DXh5s+zbVfWMhcxZkvSgcRqU7+UOzjOArc33K4DTkmQBc5QkzWGcCspcd6DP2qY6Vyv8GFjZLFuf5GtJ/keS5ww7WUnSQ43NVV5JzgJOr6pXN9OvBE6pqvO72tzYtJlupr8NnAL8FFhRVXuTTAGfAE6qqp/Msp7NwGaANWvWTG3ZsoUVK1b0ne++ffsG6qfBLMbfe1y3aVR5DXu9bcdvK9584gzat7tfEpYvX86SJUse1u6BBx7g7rvvZmad2Lhx486q2vCwDrMNrIziAzwbuLpr+kLgwhltrgae3Xw/CriDpijOaLcD2HC4dTooPzkW4+89rtvkoPzCxhv1oPzu3btrz549deDAgYe0OXDgQO3Zs6d27979sP7MMSg/Tqe8ermDcxuwqfl+FnBtVVWS1c2gPkmeBBwP7F6gvCVpYu3fv5+VK1cyczg6CStXrmT//v09xxqbq7yq6v4kB+/gXAK8r6puSnIRnWq4DbgU+GCSXXQey3xO0/25wEVJ7gMOAK+pqpmPbZYkzWKua5v6veZpbAoKQFVdBVw1Y96bu77vB86epd+VwJVDT1CSNKdxOuUlSZpgFhRJOsLVHFf7zjV/LhYUSTqCLVu2jL179z6seFQVe/fuZdmyZT3HGqsxFEnSwlq7di3T09Ps2bPnYcuWLVvG2rVre45lQZGkI9jSpUtZv359K7E85SVJaoUFRZLUCguKJKkVFhRJUissKJKkVlhQJEmtsKBIklphQZEktcKCIklqhQVFktQKC4okqRUWFElSKywokqRWWFAkSa2woEiSWmFBkSS1woIiSWrFYd/YmOTYHuIcqKofzT8dSdKk6uUVwP/QfHKINkuAJ7SSkSRpIvVSUG6pqmceqkGSr7WUjyRpQvUyhvLsltpIkhaxwxaUqtqf5J8mWX6oNu2mJUmaNL0Myv82nSOQSnJdVf2X4aclSZo0vYyhbAI20BmUvx6woEiSHqaXgvLHwMea7382vFQkSZPssAWlqj4KfHQBcpEkTTDvlJckteKwBSXJV9toI0la3HoZQzkhydcPsTzAo1vKR5I0oXopKE/toc0D801EkjTZehmU/+5CJCJJmmxjNSif5PQktybZleSCWZYfneSjzfIvJ1nXtezCZv6tSV64oIlLksanoCRZArwTeBFwInBukhNnNDsPuKuqnkznBsu3NX1PBM4BTgJOB97VxJMkLZCxKSjAycCuqtpdVfcClwFnzGhzBrC1+X4FcFqSNPMvq6p7quo7wK4mniRpgfQyKA90TjcBZwLruvtV1UUt5XIc8L2u6WnglLnaVNX9SX4MrGzmf2lG3+NaykuS1IOeCwrwSeDHwE7gnuGkM3xJNgObAdasWcO+ffvYsWNH33EG7afBLMbfe1y3aVR5DXu9bcdvK9584ozd/quqevoAN/badpAPnScaX901fSFw4Yw2VwPPbr4fBdxB5z6Yh7Ttbneoz9TUVG3fvr0GMWg/DWYx/t7juk2jymvY6207flvx5hNnVPsv4PqaZZ/azxjKF5I8rY0iNofrgOOTrE/yCDqD7NtmtNlG5+nHAGcB1zYbtw04p7kKbD1wPPCVIeYqSZqhn1Nevwq8KsluOqe8AlRVPb2NRKozJnI+naOLJcD7quqmJBfRqYbbgEuBDybZBdxJp+jQtLscuBm4H3htVXmzpSQtoH4KyouGlkWjqq4Crpox781d3/cDZ8/R92Lg4qEmKEmaUz+nvP4eeA6wqTp3zxewZihZSZImTj8F5V10Bs7PbaZ/SudGREmS+jrldUpVPSvJ1wCq6q5m8FySpL6OUO5rHmdSAElWAweGkpUkaeL0U1D+HPg48NgkFwN/B/zhULKSJE2cnk95VdWHk+wETqNzyfBLq+qWoWUmSZoo/YyhUFXfBL45pFwkSRNsnJ42LEmaYH0VlCSPSPLIYSUjSZpcPReUJK8Dvg/sSnJL85gUSZKAHgpKkv+aZBPwOuCEqjoOeC5wYpI/GHaCkqTJ0MsRynbgF4BVdJ44/FXgT4Bv03nC72OGmJ8kaUIc9iqvqvoE8IkkvwL8Dp3TXk8Hfgk4Frg2yaOq6heGmagkabz1c9nwa4HLgRuAbwAnAN+oqlN9BIskqedB+aq6jc473q8AlgFfB36tWXbvULKTJE2Mfm9svBf4VPORJOn/88ZGSVIrLCiSpFZYUCRJrbCgSJJaYUGRJLXCgiJJaoUFRZLUCguKJKkVFhRJUissKJKkVlhQJEmtsKBIklphQZEktcKCIklqhQVFktQKC4okqRUWFElSKywokqRWWFAkSa2woEiSWjEWBSXJsUmuSXJb8+9j5mi3qWlzW5JNXfN3JLk1yQ3N57ELl70kCcakoAAXAJ+rquOBzzXTD5HkWOAtwCnAycBbZhSeV1TVM5rPDxciaUnSg8aloJwBbG2+bwVeOkubFwLXVNWdVXUXcA1w+sKkJ0k6nHEpKGuq6vvN9x8Aa2Zpcxzwva7p6WbeQX/ZnO56U5IMKU9J0hxSVQuzouSzwD+bZdHvAVur6ue62t5VVQ8ZR0nyBmBZVb21mX4T8LOqenuS46rq9iTHAFcCH6qqD8yRx2ZgM8CaNWumtmzZwooVK/renn379g3UT4NZjL/3uG7TqPIa9nrbjt9WvPnEGbTvfHPfuHHjzqra8LAFVTXyD3Ar8Ljm++OAW2dpcy7wnq7p9wDnztLuN4F39LLeqamp2r59ew1i0H4azGL8vcd1m0aV17DX23b8tuLNJ86o9l/A9TXLPnVcTnltAw5etbUJ+OQsba4GXpDkMc1g/AuAq5MclWQVQJKlwIuBGxcgZ0lSl3EpKH8EPD/JbcDzmmmSbEiyBaCq7gT+ALiu+VzUzDuaTmH5OnADcDvw3gXfAkk6wi3YGMo4SrIH+BHw4wG6rwLuaDUhHcqjGezvNM7GdZtGldew19t2/LbizSfOoH3nu/96YlWtnjnziC4oAEkuqarNA/S7vmYblNJQDPp3Gmfjuk2jymvY6207flvx5hNn3PZf43LKa5T+ZtQJqCeL8e80rts0qryGvd6247cVbz5xxuq/oSP+CGVQHqFImlQeoYyfS0adgCQNaCj7L49QJEmt8AhFktQKC4okqRUWFElSKywoLUmyPMnWJO9N8opR5yNJvUrypCSXJrliPnEsKIeQ5H1JfpjkxhnzT2/eELkrycGXgb0MuKKqfgt4yYInK0ld+tl/VdXuqjpvvuu0oBza+5nxEq8kS4B3Ai8CTgTOTXIisJYH39fywALmKEmzeT+9779aYUE5hKr6PHDnjNknA7uain4vcBmdN05O0ykq4O8qacT63H+1wh1f/+Z6c+THgDOT/AVj9jgESWrMuv9KsjLJu4FnJrlw0OBHzTc7dVTV3cCrRp2HJPWrqvYCr5lvHI9Q+nc78Piu6bXNPEkad0Pdf1lQ+ncdcHyS9UkeAZxD542TkjTuhrr/sqAcQpKPAF8EnpJkOsl5VXU/cD6dVxLfAlxeVTeNMk9JmmkU+y8fDilJaoVHKJKkVlhQJEmtsKBIklphQZEktcKCIklqhQVFktQKC4okqRUWFElSKywoUsuS/HaSW5J8uOW4/755mnX3vBuTnNDmeqRB+bRhqX3/EXheVU23HPdpwFcPTiRZBqwDvtXyeqSBeIQitah5p8STgE8n+Z0Zy/5tkq8kuSHJe5IsSbKuOZp5b5KbknwmySPnCP90ugoKnQLzrap6IMm1TdwbkuxP8uvD2UJpbj7LS2pZkv8DbKiqO7rmnQD8MfCyqrovybuALwGfB3Y17W9Icjmwrao+NEvcvcA+4OD/tCuA/15Vv9nV5j8AG4Fzq8pXUWtBecpLWhinAVPAdUkAHgn8kE5B+U5V3dC020nnNNZDJHk8sKeqnto17x3Ad7qmf4POu8LPtJhoFCwo0sIIsLWqHvJ61STrgHu6Zj1Ap9jM9DRg5mPGTwQ+2cQ5G3gFcEZV3ddSzlJfHEORFsbngLOSPBYgybFJnthH/6cDN8+YdxLwjSQvpnMhwMuqan8r2UoDsKBIC6CqbgbeCHwmydeBa4DH9RHiaXQVlCTH0hkD/QGwlc6rXP9XMyh/XnuZS71zUF6S1AqPUCRJrbCgSJJaYUGRJLXCgiJJaoUFRZLUCguKJKkVFhRJUissKJKkVvw/9uxR0r5IEYsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.subplot(211)\n", "plt.plot()\n", "plt.xscale('log')\n", "plt.grid(True,'both')\n", "plt.legend(loc='best')\n", "plt.xlabel('f en $Hz$')\n", "plt.ylabel('$G_{dB}$ en [dB]')\n", "\n", "plt.subplot(212)\n", "plt.plot()\n", "plt.xscale('log')\n", "plt.grid(True,'both')\n", "plt.legend(loc='best')\n", "plt.xlabel('f en $Hz$')\n", "plt.ylabel('$\\phi$ en $[°]$')\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**On souhaite maintenant étudier numériquement l'effet de ce filtre sur une tension créneau périodique. Pour cela on donne une représentation de cette tension.**" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEKCAYAAADAVygjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYJElEQVR4nO3df5wkdX3n8ddHWHERsFUG5ECzEmQVkJtFgseJd3NADKIGEjWnZ36oyc3D87zoaeLJAy8a8iAPjafxVIzZnKiJnGhOkTwQLoihIZwBwsKC4IIuPwVRHv5oZRBQhs/9UTXSDDPT3TtVXTW9r+fj0Y/trq6ueu93e+c9VdVdFZmJJEl1eFzTASRJk8uSkSTVxpKRJNXGkpEk1caSkSTVxpKRJNVm16YDrEan08mDDjqo6RgD3XfffTzxiU9sOsaK1kJGMGfVzFmttZJzy5Yt38vMqXGsa02XzL777stVV13VdIyBut0uMzMzTcdY0VrICOasmjmrtVZyRsTt41qXu8skSbWxZCRJtbFkJEm1sWQkSbVpXclExC4RcU1EnNd0FknS6rSuZIA3A9uaDiFJWr1WfYQ5Ig4AXgKcDrx10Py33LIHa+DTgvR603Q6TadY3vbtsH798/jmN5tOMhk2bYI77zyaQw9tOslgbX9vgu/Pqr3lLeNdX6tKBvgg8HZgz+VmiIhZYLa4v4lerzeWYKsxPz/f6py93h488MCudLvdpqMMNDc31/qcd955ND/5yeNa/W++oO3vTfD9WbVud3qs62tNyUTES4F7MnNLRMwsN19mbgY2A+y++6bcurUzlnyr0fYvaM3MQK831+qMC9o+lgCHHgq9Xg/fm9Xw/VmtcW+5tumYzAuAX42I24CzgWMj4tPNRpIkrUZrSiYzT8nMAzJzA/Aq4B8y8zcbjiVJWoXWlIwkafK05phMv8zsAt2GY0iSVsktGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbVpTMhHxhIi4MiKujYgbIuKPm84kSVqdNl0Z80Hg2Myci4h1wGURcUFmXt50MEnSjmlNyWRmAnPlw3XlLZtLJElardaUDEBE7AJsAQ4CzsjMK5aYZxaYBVi37jC63e5YM+6Iubm5Vufs9aaZn59vdcYFbR9LcDyr5nhWq9ebHuv6WlUymTkPTEdEBzgnIg7LzOsXzbMZ2Ayw++6bcmZmZuw5R9Xtdmlzzk4Her1eqzMuaPtYguNZNcezWp3OeNfXmgP//TKzB1wMnNBwFEnSKrSmZCJiqtyCISLWA78M3NhoKEnSqrRpd9l+wKfK4zKPAz6Xmec1nEmStAqtKZnMvA7Y1HQOSVJ1WrO7TJI0eSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbVpTMhHx9Ii4OCK+HhE3RMSbm84kSVqd1lwZE3gIeFtmXh0RewJbIuLLmfn1poNJknZMa7ZkMvPuzLy6vH8vsA3Yv9lUkqTVaNOWzM9FxAZgE3DFEs/NArMA69YdRrfbHWu2HTE3N9fqnL3eNPPz863OuKDtYwmOZ9Ucz2r1etNjXV/rSiYi9gA+D7wlM3+8+PnM3AxsBth99005MzMz3oA7oNvt0uacnQ70er1WZ1zQ9rEEx7Nqjme1Op3xrq81u8sAImIdRcGclZlfaDqPJGl1WlMyERHAx4FtmfmBpvNIklavNSUDvAD4LeDYiNha3k5sOpQkace15phMZl4GRNM5JEnVadOWjCRpwlgykqTaWDKSpNpYMpKk2lgykqTaWDKSpNpYMpKk2lgykqTaWDKSpNoM/MZ/RDxliOU8nJm91ceRJE2SYU4r8+3yttIpX3YBnlFJIknSxBimZLZl5qaVZoiIayrKI0maIMMck/kPQ8xz9GqDSJImzzAl86WI+ERELLs7LDMfqDCTJGlCDFMyzwauBi6JiP8ZEVM1Z5IkTYiBJZOZP83MDwPPAb4FXBkRfxIRe1UdJiLOjIh7IuL6qpctSRq/ob8nk5kPZOb/AA4D7ge2RMQfVJznk8AJFS9TktSQoUsmIjZExAnA71F8XPle4E+rDJOZlwI/qHKZkqTmDPNlzOuA/YE7gBuBbcBXgI8A36g1nSRpTRvmezInA7dmZtacZSgRMQvMAqxbdxjdbrfZQEOYm5trdc5eb5r5+flWZ1zQ9rEEx7Nqjme1er3psa5vYMlk5i3jCDKszNwMbAbYffdNOTMz02ygIXS7Xdqcs9OBXq/X6owL2j6W4HhWzfGsVqcz3vUNPCYTEVdXMY8kaeczzO6y55THZZYTwJOqCBMRnwFmgL0j4k7gXZn58SqWLUkav2FK5tlDzDO/2iAAmfnqKpYjSWqHYY7J3D6OIJKkyeNFyyRJtbFkJEm1GeaYDAARsRvwcmBD/+sy87TqY0mSJsHQJQOcC/wI2AI8WE8cSdIkGaVkDshMT14pSRraKMdkvhoRz60tiSRp4oyyJXMM8LqIuIVid1kAmZmH15JMkrTmjVIyL64thSRpIo2yu+wO4IXA75Rf0Exg31pSSZImwigl81HgaGDh1C/3AmdUnkiSNDFG2V32/Mw8IiKuAcjMH0bE42vKJUmaAKNsyfwsInah2E1GREwBD9eSSpI0EUYpmQ8B5wD7RMTpwGXAn9aSSpI0EYbeXZaZZ0XEFuA4io8vn5yZ22pLJkla80Y5JkNm3gjcWFMWSdKEadVZmCPihIi4KSK2R8Q7ms4jSVqd1pRM+aGCMyi+9HkI8OqIOKTZVJKk1WhNyQBHAdsz85bM/ClwNnBSw5kkSavQpuvJ7A98q+/xncDzl8gxC8wCrF9/MN1ut6LV12dubq7VOXu9aebn51udcUHbxxIcz6o5ntXq9abHur41dz2ZzNwMbAbYuHFjzszMNBVlaN1ulzbn7HSg1+u1OuOCto8lOJ5Vczyr1emMd31tup7MXcDT+9dXTpMkrVFtup7MPwPPiohnlqereRXwdzWuT5JUs1GvJ/PaiLiVGq4nk5kPRcSbgL8HdgHOzMwbqli2JKkZrbqeTGaeD5xf93okSeMx9O6y8hoyHeBl5a1TTpMkaUlDl0xEvBk4C9invH06Iv5LXcEkSWvfKLvLfpfimjL3AUTEe4F/Aj5cRzBJ0to3yqfLApjvezxfTpMkaUmjbMl8ArgiIs4pH58MfLzyRJKkiTHK9WQ+EBGXAC8oJ70uM6+pJ5YkaRKMej2ZLRSnlZEkaaCBJRMRl2XmMRFxL5D9T1F8GXOv2tJJkta0gSWTmceUf+5ZfxxJ0iQZ5Xsyr4yIPcv774yIL0TEpvqiSZLWulE+wvzfM/PeiDgGOJ7ik2UfqyeWJGkSjFIyC9+ReQmwOTO/BDy++kiSpEkxSsncFRF/SXEK/vPLK2W26fLNkqSWGaUkfoPiNPwvyswe8GTgD+sIJUmaDKN8T2YeeALwyojof92F1UaSJE2KUUrmXKAHXE1x0TJJklY0SskckJkn1BEiIl4JvBt4DnBUZl5Vx3okSeM1yjGZr0bEc2vKcT3w68ClNS1fktSAUbZkjgFeFxG3UOwuWzitzOGrDZGZ2wAivHKAJE2SUUrmxbWlGEFEzAKzAFNTU3S73WYDDWFubq7VOXu9aebn51udcUHbxxIcz6o5ntXq9abHur5RSuYO4DXAgZl5WkQ8A3gacPswL46Ii8r5Fzs1M88dNkRmbgY2A2zcuDFnZmaGfWljut0ubc7Z6UCv12t1xgVtH0twPKvmeFar0xnv+kYpmY8CDwPHAqcB9wKfB35pmBdn5vEjp5MkrWmjlMzzM/OIiLgGIDN/GBGeVkaStKxRPl32s4jYhfKaMhExRbFls2oR8WsRcSdwNPCliPj7KpYrSWrWKFsyHwLOAfaJiNOBVwDvrCJEZp5TLluSNEGGuTLmrpn5UGaeFRFbgOMoPr588sJHjyVJWsowWzJXAkcAZOaNwI21JpIkTYxhjsn4DUlJ0g4ZZktmKiLeutyTmfmBCvNIkibIMCWzC7AHbtFIkkY0TMncnZmn1Z5EkjRxPCYjSarNMCVzXO0pJEkTaWDJZOYPxhFEkjR5RjmtjCRJI7FkJEm1sWQkSbWxZCRJtbFkJEm1sWQkSbVpRclExPsi4saIuC4izomITtOZJEmr14qSAb4MHJaZhwPfAE5pOI8kqQKtKJnMvDAzHyofXg4c0GQeSVI1WlEyi7weuKDpEJKk1RvmLMyViIiLgKct8dSpmXluOc+pwEPAWSssZxaYBZiamqLb7VYftmJzc3OtztnrTTM/P9/qjAvaPpbgeFbN8axWrzc91vWNrWQy8/iVno+I1wIvBY7LzFxhOZuBzQAbN27MmZmZClPWo9vt0uacnQ70er1WZ1zQ9rEEx7Nqjme1Op3xrm9sJbOSiDgBeDvwbzPzJ03nkSRVoy3HZD4C7Al8OSK2RsTHmg4kSVq9VmzJZOZBTWeQJFWvLVsykqQJZMlIkmpjyUiSamPJSJJqY8lIkmpjyUiSamPJSJJqY8lIkmpjyUiSamPJSJJqY8lIkmpjyUiSamPJSJJqY8lIkmpjyUiSamPJSJJq04qSiYg/iYjryqtiXhgR/6LpTJKk1WtFyQDvy8zDM3MaOA/4o4bzSJIq0IqSycwf9z18IpBNZZEkVWfXpgMsiIjTgd8GfgT8uxXmmwVmAaampuh2u2PJtxpzc3OtztnrTTM/P9/qjAvaPpbgeFbN8axWrzc91vVF5ng2GiLiIuBpSzx1amae2zffKcATMvNdg5a5cePGvOmmmypMWY9ut8vMzEzTMZY1MwO9Xo+tWztNRxmo7WMJjmfVHM9qzczAJZfElsw8chzrG9uWTGYeP+SsZwHnAwNLRpLUbq04JhMRz+p7eBJwY1NZJEnVacsxmfdExEbgYeB24A0N55EkVaAVJZOZL286gySpeq3YXSZJmkyWjCSpNpaMJKk2lowkqTaWjCSpNpaMJKk2lowkqTaWjCSpNpaMJKk2lowkqTaWjCSpNpaMJKk2lowkqTaWjCSpNpaMJKk2lowkqTatKpmIeFtEZETs3XQWSdLqtaZkIuLpwIuAO5rOIkmqRisuv1z6c+DtwLlNB9nZbN8Ovd4ezMw0nWSwXm+aTqfpFCvbuhXWrVvfdIyJ4fuzWlu3jnd9rSiZiDgJuCszr42IQfPOArMAU1NTdLvd+gOu0tzcXKtzrl//PB54YFd6vbmmoww0Pz9Pr9drOsaK1q1bz157PUC3+09NRxmo7e9N8P1ZtbH/ApSZY7kBFwHXL3E7CbgCeFI5323A3sMs8+CDD8614OKLL246wkBrIWOmOatmzmqtlZzAVTmmn/1j25LJzOOXmh4RzwWeCSxsxRwAXB0RR2Xmd8aVT5JUvcZ3l2Xm14B9Fh5HxG3AkZn5vcZCSZIq0ZpPl0mSJk/jWzKLZeaGpjNIkqrhlowkqTaWjCSpNpaMJKk2lowkqTZRfC9nbYqIe4Gbms4xhL2Btn8key1kBHNWzZzVWis5N2bmnuNYUes+XTaimzLzyKZDDBIRV7U951rICOasmjmrtZZyjmtd7i6TJNXGkpEk1Watl8zmpgMMaS3kXAsZwZxVM2e1zLnImj7wL0lqt7W+JSNJajFLRpJUn3FduGbhBpxA8d2W7cA7lnh+N+Cz5fNXABv6njulnH4T8CuDlklxnZoryumfBR4/aB0N5TyrnH49cCawrpw+A/wI2Fre/qjhnJ8Ebu3LM11OD+BD5fzXAUc0mPEf+/J9G/hiw2N5JnAPcP2iZT0F+DLwzfLPJw8zlg3kfB9wY5nlHKBTTt8A3N83nh9rOOe7gbv68pw4aFkN5fxsX8bbgK1NjSfwdOBi4OvADcCbq3h/PibXoBmqvAG7ADcDBwKPB64FDlk0zxsXBhh4FfDZ8v4h5fy7UZTHzeXyll0m8DngVeX9jwH/aaV1NJjzxPIfL4DP9OWcAc5r0Xh+EnjFEjlOBC4o8/8r4IqmMi5a7ueB325qLMvn/g1wBI/9YfNnlD8ogHcA7x00lg3lfBGwa3n/vX05Nyyet+Gc7wb+YIkcyy6riZyLlvt+yl92mhhPYD/KkgD2BL7BI//Xd+j9udRt3LvLjgK2Z+YtmflT4GyKyy/3Own4VHn//wDHRXHJzJOAszPzwcy8laJJj1pumeVrji2XQbnMkwesY+w5ATLz/CwBV1JcHXQYY825gpOAvy7/CpcDnYjYr8mMEbEXxb//FwdkX1BHTjLzUuAHS6yvf1mL35vLjeXYc2bmhZn5UPnwcpp9b640nstZdllN5ixf/xsUv1QOo/KcmXl3Zl5d5r0X2Absv8SyRnl/Psa4S2Z/4Ft9j+/kkb/UY+Yp39w/Ap66wmuXm/5UoNf3H6R/Xcuto4mcPxcR64DfAv5v3+SjI+LaiLggIg5dLsMYc54eEddFxJ9HxG5D5GhkLCn+U3wlM3/cN23cY7mSfTPz7vL+d4B9h8wx7pz9Xk/xW+yCZ0bENRFxSUS8cLkMY8z5pvK9eWZEPHnIHE2N5wuB72bmN/umNTaeEbEB2ESxmw12/P35GB74b5ePApdm5j+Wj68GfiEz/yXwYYb/rbwupwDPBn6JYp/tf2s2zopezaN/S2zbWP5cuQWbTedYSUScCjxEcfwQ4G7gGZm5CXgr8L/Lrcem/AXwi8B0me39DWYZxuL3Z2PjGRF7UOxafsuiX8qA1b8/x10yd1EcbFpwQDltyXkiYlfgScD3V3jtctO/T7Ept+ui6Suto4mclMt4FzBF8QYDIDN/nJlz5f3zgXURsXdTOcvN68zMB4FP8Mhuh5VyNDGWe5fZvrQwraGxXMl3F3YzlH/eM2SOceckIl4LvBR4TfkDh3LXy/fL+1so9vMf3FTOzPxuZs5n5sPAXzHce3PsOfuW8esUB+kX8jcynuXek88DZ2XmF/rm2dH352PlgIM2Vd4oTsh5C8XBp4WDV4cumuc/8+iDV58r7x/Kow9e3UJx8GrZZQJ/y6MP/L9xpXU0mPP3gK8C6xet42k88oXZo4A7Fh43lHO/8s8APgi8p3z8Eh59MPDKpjKWr3sD8Kmmx7LvdRtY+lNb/QdW/2zQWDaU8wSKTx9NLZo+xSMHuQ+k+EHzlAZz7td3/79SHIMYZlljzdk3ppc0PZ7le+yvgQ8ukXGH3p9L3cZaMmXIEyk+xXAzcGo57TTgV8v7T6Aoh+0UB8EP7HvtqeXrbgJevNIy+/6xriyX9bfAboPW0VDOh8ppW+n7eC3wJoqPFl5LcdD1Xzec8x+Ar1F81PrTwB7l9ADOKOf/GnBkUxnL57rACYumNTWWn6HYFfIziv3Xv1tOfyrwFYqPiF5E+QNl0Fg2kHM7xT74rfR9tBZ4eTmeWyl2Rb6s4Zx/U47XdcDf8ejSWXJZTeQsn/sk8IZFGcY+nsAxFLvBrmPRR79Zxftz8c3TykiSauOBf0lSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGe1UImI+IrZGxA3leczeFhHL/j+IiE5EvHHMGTdExP0RsXWFedaXf4+fLjpzgdQqlox2Nvdn5nRmHgr8MvBi4F0rzN+hOIX6uN2cmdPLPZmZ95fPf3tsiaQdYMlop5WZ9wCzFGfvjYj4YkRsKbdyZsvZ3gP8YrnV8D6AiPjNiLiynPaXEbHLUstfar5yK2VbRPxVuZ4LI2L9oKwR8Ttltusi4rKqxkCqmyWjnVpmLpzHaR/g9Zn5POBI4Pcj4qkU5226udz6+cOIeA7w74EXlFsS88BrFi93wHzPAs4ot6Z6FKcUWVZE7ElxxuujM/NwipNVSmvCroNnkXYavx8Rv1befzpFGXxn0TzHAc8D/rm8zt16HjlD7TDzXQrcmplby/m2UJxIcSXz5evfHxGfysyrhv8rSc2yZLRTi4gDKX6IHwIcT7G18JOI6FKccPAxL6E4w/Mpgxa91HzlxaEe7Ju0UCDLKvMcBrwM2BwR/yszPzpg/VIruLtMO62ImKK4BMRHgL2AH5Y/0J9NcRpzgHsprn++4CvAKyJin3IZT4mIX1hi8cPON0zOZ2XmfZl5NnAeS5ef1EpuyWhns778aPA6ikss/A3wgfLxGyJiG8Xp0C8HyMzvR8T/i4jrgQvK4zLvBC4sP/r8M4rreNzev5LM/Poy8y3e/TaMUyPiaOA+itPB/8cdWIbUCE/1L7VMuUvtvMw8bIh5b6O4psf36s4l7Qh3l0ntMw88aZgvY1JsgT08plzSyNySkSTVxi0ZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm0sGUlSbSwZSVJtLBlJUm3+Py2jWwLyVBv/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "Emax = 4.0\n", "Emin = -4.0\n", "T2 = 1.0e-3/2.0\n", "\n", "plt.figure()\n", "plt.plot([0.0,T2],[Emax,Emax],'b-')\n", "plt.plot([T2,2*T2],[Emin,Emin],'b-')\n", "plt.plot([2*T2,3*T2],[Emax,Emax],'b-')\n", "plt.plot([3*T2,4*T2],[Emin,Emin],'b-')\n", "plt.plot([0.0,0.0],[0.0,Emax],'b-')\n", "plt.plot([T2,T2],[Emax,Emin],'b-')\n", "plt.plot([2*T2,2*T2],[Emin,Emax],'b-')\n", "plt.plot([3*T2,3*T2],[Emax,Emin],'b-')\n", "plt.plot([4*T2,4*T2],[Emin,Emax],'b-')\n", "plt.grid(True)\n", "plt.ylabel('Tension en $[V]$')\n", "plt.xlabel('Date en $[s]$')\n", "plt.xlim(0.0,2.0e-3)\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La décomposition en série de Fourier d'une tension périodique impaire créneau d'amplitude $E$ et de fréquence $f_0$ est donnée par :" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$ e(t) = \\frac{4.E}{\\pi}\\sum_{k=0}^\\infty \\frac{1}{2k+1}\\sin(2.\\pi.(2k+1).f_0.t)$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "11. A l'aide d'un programme python reconstruire par supperposition des 100 premières harmoniques, une tension créneau comme celle représentée sur le chronogramme précédent. On utilisera une boule `for`pour créer une listte des 100 premières harmoniques et la fonction `np.sum` pour réaliser la supperposition. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEOCAYAAAB1g0unAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAATQElEQVR4nO3df4xlZX3H8ffHRdQqgpbFWnYRbNfCFo2sU9So1RY0gOli4i9ojUipm6pYU3+kGK0arKaWalMtimv9VbVS+kPdCAYTiiVawd0VpLArZl0UFm1ARGJAhYVv/zhns9N1Z+a5y9wzd3ber2Sy95z7nHu++2RmPnN+PU+qCkmSWjxooQuQJC0ehoYkqZmhIUlqZmhIkpoZGpKkZoaGJKnZYKGR5GNJbk1y3QzvJ8n7k2xLcm2SNUPVJklqM+SRxieAk2Z5/2RgVf+1DvjQADVJkkYwWGhU1RXAj2dpcirwT9W5EjgkyWOHqU6S1GKSrmkcDtw8bXlHv06SNCEOWOgC9kWSdXSnsHj4wx/+lKOPPnqBK5KkxWXz5s0/qqrlo243SaFxC7By2vKKft0vqar1wHqAqamp2rRp0/irk6T9SJLv78t2k3R6agPw8v4uqqcBd1bVDxe6KEnSboMdaST5LPAc4NAkO4C3Aw8GqKoLgEuAU4BtwN3AmUPVJklqM1hoVNXpc7xfwGsGKkeStA8m6fSUJGnCGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKnZoKGR5KQkNyTZluScvbx/RJLLk1yd5NokpwxZnyRpdoOFRpJlwPnAycBq4PQkq/do9lbgoqo6DjgN+OBQ9UmS5jbkkcbxwLaq2l5V9wAXAqfu0aaAR/avDwZ+MGB9kqQ5DBkahwM3T1ve0a+b7h3Ay5LsAC4BXru3D0qyLsmmJJtuu+22cdQqSdqLSbsQfjrwiapaAZwCfCrJL9VYVeuraqqqppYvXz54kZK0VA0ZGrcAK6ctr+jXTXcWcBFAVX0deChw6CDVSZLmNGRobARWJTkqyYF0F7o37NHmJuAEgCTH0IWG558kaUIMFhpVtRM4G7gU2Ep3l9T1Sc5NsrZv9gbglUm+BXwWeEVV1VA1SpJmd8CQO6uqS+gucE9f97Zpr7cAzxiyJklSu0m7EC5JmmCGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZoaGJKmZoSFJamZoSJKaGRqSpGYHzNUgyaMbPuf+qvrJAy9HkjTJ5gwN4Af9V2Zpsww4Yl4qkiRNrJbQ2FpVx83WIMnV81SPJGmCtVzT+MOGNk9/oIVIkiZfS2hcnOTjSWY8/VRVP5/HmiRJE6olNI4Gvgn8V5K/T7J8zDVJkibUnKFRVfdU1QeAY4CbgW8keWeSR469OknSRGl+TqOqfl5VfwscC/wM2JzkjWOrTJI0cZpDI8mRSU4C/oTu9tqfAu8eV2GSpMkzZ2gkuTbJ7cDngDOAg4HLgJcDjxhlZ0lOSnJDkm1JzpmhzUuSbElyfZJ/HuXzJUnj1fKcxguAG6uqHsiOkiwDzgeeC+wANibZUFVbprVZBbwZeEZV3ZHksAeyT0nS/Gq5EL79gQZG73hgW/959wAXAqfu0eaVwPlVdUe/71vnYb+SpHnScnrqm/PRBjic7u6rXXb066Z7AvCEJF9LcmV/DUWSNCFaTk8dk+TaWd4P3XWO+apnFfAcYAVwRZIn7jkYYpJ1wDqAI45wyCtJGkpLaBzd0Oa+hja3ACunLa/o1023A7iqqu4FbkzyHboQ2Ti9UVWtB9YDTE1NzcepM0lSgzlDo6q+P0/72gisSnIUXVicxi+Pa/V54HTg40kOpTtdtX2e9i9JeoAGm4SpqnYCZwOXAluBi6rq+iTnJlnbN7sUuD3JFuBy4E1VdftQNUqSZpf5uTFq4UxNTdWmTZsWugxJWlSSbK6qqVG3a7mmsWsHDwFeCBw5fbuqOnfUnUqSFqfm0AC+ANwJbAZ+MZ5yJEmTbJTQWFFVPjchSUvYKBfC/zvJE8dWiSRp4o1ypPFM4Mwk2+lOTwWoqnrSWCqTJE2cUULj5LFVIUlaFEY5PXUT8CzgjP6BvwIeM5aqJEkTaZTQ+CDwdLontqGbhOn8ea9IkjSxRjk99dSqWpPkaoB+vosDx1SXJGkCjXKkcW8/kVIBJFkO3D+WqiRJE2mU0Hg/3ZSvhyV5F/BVnCNckpaU5tNTVfWZJJuBE+hut31BVW0dW2WSpIkzyjUNqurbwLfHVIskacINNjS6JGnxMzQkSc0MDUlSM+fTkCQ1cz4NSVIz59OQJDVzPg1JUrNR59N4RZIbcT4NSVqSnE9DktSs+fRUP4fGIcAf9F+H9OskSUtEc2gkeR3wGeCw/uvTSV47rsIkSZNnlNNTZ9HNqXEXQJL3AF8HPjCOwiRJk2eUu6cC3Ddt+b5+nSRpiRjlSOPjwFVJPtcvvwD46LxXJEmaWKPMp/G+JP8FPKNfdWZVXT2esiRJk2jU+TQ20w0jIklaguYMjSRfrapnJvkp/fzgu96ie7jvkWOrTpI0UeYMjap6Zv/vQeMvR5I0yUZ5TuPFSQ7qX781yX8kOW58pUmSJs0ot9z+ZVX9NMkzgRPp7py6YDxlSZIm0SihsesZjecD66vqYuDA+S9JkjSpRgmNW5J8GDgNuKSfyc/pYiVpCRnll/5LgEuB51XVT4BHAW8aZWdJTkpyQ5JtSc6Zpd0Lk1SSqVE+X5I0XqM8p3Ef8FDgxUmmb/fllo2TLAPOB54L7AA2JtlQVVv2aHcQ8DrgqhFqkyQNYJQjjS8Aa4GdwF3TvlodD2yrqu1VdQ9wIXDqXtq9E3gP8PMRPluSNIAh5wg/HLh52vIO4KnTGyRZA6ysqouTzHjqK8k6YB3AEUcc8QBKkiSNYmLmCE/yIOB9wBvmaltV66tqqqqmli9fPq6SJEl7GHWO8DOTbGff5gi/BVg5bXlFv26Xg4Bjga8kAfg1YEOStVW1aYQ6JUljMuQc4RuBVUmOoguL04A/3PVmVd0JHLprOclXgDcaGJI0OUY5PXUT8CzgjH5u8AIe07pxVe0Ezqa7bXcrcFFVXZ/k3CRrR6hDkrRAUlVztwKSfAi4H/j9qjomyaOAL1fV74yzwLlMTU3Vpk0ejEjSKJJsrqqRn4Ub5fTUU6tqTZKrAarqjiQOIyJJS8gop6fu7R/QK4Aky+mOPCRJS8QoofF+4HPAYUneBXwVePdYqpIkTaSWmfsOqKqdVfWZJJuBE+hut31BVW0de4WSpInRck3jG8AagKr6NvDtsVYkSZpYLaenMvYqJEmLQsuRxvIkr5/pzap63zzWI0maYC2hsQx4BB5xSNKS1xIaP6yqc8deiSRp4nlNQ5LUrCU0Thh7FZKkRWHO0KiqHw9RiCRp8o3yRLgkaYkzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNBg2NJCcluSHJtiTn7OX91yfZkuTaJJcledyQ9UmSZjdYaCRZBpwPnAysBk5PsnqPZlcDU1X1JODfgL8Zqj5J0tyGPNI4HthWVdur6h7gQuDU6Q2q6vKqurtfvBJYMWB9kqQ5DBkahwM3T1ve0a+byVnAl/b2RpJ1STYl2XTbbbfNY4mSpNlM5IXwJC8DpoDz9vZ+Va2vqqmqmlq+fPmwxUnSEnbAgPu6BVg5bXlFv+7/SXIi8Bbg2VX1i4FqkyQ1GPJIYyOwKslRSQ4ETgM2TG+Q5Djgw8Daqrp1wNokSQ0GC42q2gmcDVwKbAUuqqrrk5ybZG3f7DzgEcC/JrkmyYYZPk6StACGPD1FVV0CXLLHurdNe33ikPVIkkYzkRfCJUmTydCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNDA1JUjNDQ5LUzNCQJDUzNCRJzQwNSVIzQ0OS1MzQkCQ1MzQkSc0MDUlSM0NDktTM0JAkNTM0JEnNBg2NJCcluSHJtiTn7OX9hyT5l/79q5IcOWR9kqTZDRYaSZYB5wMnA6uB05Os3qPZWcAdVfWbwN8B7xmqPknS3IY80jge2FZV26vqHuBC4NQ92pwKfLJ//W/ACUkyYI2SpFkcMOC+Dgdunra8A3jqTG2qameSO4FfBX40vVGSdcC6fvEXSa4bS8WLz6Hs0VdLmH2xm32xm32x22/ty0ZDhsa8qar1wHqAJJuqamqBS5oI9sVu9sVu9sVu9sVuSTbty3ZDnp66BVg5bXlFv26vbZIcABwM3D5IdZKkOQ0ZGhuBVUmOSnIgcBqwYY82G4Az+tcvAv6zqmrAGiVJsxjs9FR/jeJs4FJgGfCxqro+ybnApqraAHwU+FSSbcCP6YJlLuvHVvTiY1/sZl/sZl/sZl/stk99Ef+QlyS18olwSVIzQ0OS1GzRhIZDkOzW0BevT7IlybVJLkvyuIWocwhz9cW0di9MUkn2y9stW/ohyUv674vrk/zz0DUOpeHn44gklye5uv8ZOWUh6hxCko8luXWmZ9nSeX/fV9cmWTPnh1bVxH/RXTj/LvB44EDgW8DqPdq8Grigf30a8C8LXfcC9sXvAb/Sv37VUu6Lvt1BwBXAlcDUQte9QN8Tq4CrgUf1y4ctdN0L2BfrgVf1r1cD31vousfYH78LrAGum+H9U4AvAQGeBlw112culiMNhyDZbc6+qKrLq+rufvFKumdi9kct3xcA76Qbx+znQxY3oJZ+eCVwflXdAVBVtw5c41Ba+qKAR/avDwZ+MGB9g6qqK+juRJ3JqcA/VedK4JAkj53tMxdLaOxtCJLDZ2pTVTuBXUOQ7G9a+mK6s+j+ktgfzdkX/eH2yqq6eMjCBtbyPfEE4AlJvpbkyiQnDVbdsFr64h3Ay5LsAC4BXjtMaRNp1N8ni3MYEbVJ8jJgCnj2QteyEJI8CHgf8IoFLmUSHEB3iuo5dEeeVyR5YlX9ZCGLWiCnA5+oqvcmeTrds2HHVtX9C13YYrBYjjQcgmS3lr4gyYnAW4C1VfWLgWob2lx9cRBwLPCVJN+jO2e7YT+8GN7yPbED2FBV91bVjcB36EJkf9PSF2cBFwFU1deBh9INZLgUNf0+mW6xhIZDkOw2Z18kOQ74MF1g7K/nrmGOvqiqO6vq0Ko6sqqOpLu+s7aq9mmgtgnW8vPxebqjDJIcSne6avuANQ6lpS9uAk4ASHIMXWjcNmiVk2MD8PL+LqqnAXdW1Q9n22BRnJ6q8Q1Bsug09sV5wCOAf+3vBbipqtYuWNFj0tgX+73GfrgUeF6SLcB9wJuqar87Em/sizcAH0ny53QXxV+xn/6BSZLP0v2xcGh/DeftwIMBquoCums6pwDbgLuBM+f8zP20ryRJY7BYTk9JkiaAoSFJamZoSJKaGRqSpGaGhiSpmaEhSWpmaGhJSHJfkmv6YcG/leQN/TAjM7U/JMmrh6xxhjqOTPKzJNfM0e5h/f/vnv7hPWksDA0tFT+rqidX1W8DzwVOpnvQaSaH0A23Pwm+W1VPnq1BVf2sb7PfjtiqyWBoaMnph1ZZB5zdD5/w+SSb+6OQdX2zvwZ+o//r/TzoBoBM8o1+3YeTLEvy8CQX90cv1yV56d72OcO2RybZmuQj/b6/nORhc9Wf5Iy+3muTfHW++kVqsSiGEZHmW1VtT7IMOAz446r6cf8Le2OSfwfOAY7d9Rd+P0bRS4FnVNW9ST4I/BFwF/CDqnp+3+7gPfc1y7ZX0A0aeHpVvTLJRcALgU/PVHeSg4C/AJ5cVfckOWQ++kNq5ZGGBH+W5Ft0AxquZO+jv54APIUuVK7plx8P/A/w3CTvSfKsqrpzhG0Bbqyqa/rXm4Ej56j1PuBhwHuTTC3Roc21gDzS0JKU5PF0v4BXAycCT6+qu5N8hW7U01/aBPhkVb15L5+1hm7Qt79KcllVnduybbp57KcPW78rEGbU13gs8AfA+iT/WFUfnG0baT55pKElJ8ly4ALgH+im/byj/2V8NN2cGwA/pZuPY5fLgBclOaz/jEcneVySXwfurqpP040uvGYvu9zrtvtY+6qququqLgS+yN4DThobjzS0VDysPzX0YGAn8Cm6Wf0eDPxpkq3ADXSnqKiq29NNjXod8KWqelOStwJf7m/VvRd4Dd1kX+club9f96o9d1xVW2bY9n/34f/xlnSzzd0FXE8397c0GIdGlyZYfwrri1V1bGP77wFTVfWjcdalpcvTU9Jkuw84uPXhProjJ+e61th4pCFJauaRhiSpmaEhSWpmaEiSmhkakqRmhoYkqZmhIUlqZmhIkpoZGpKkZv8HIyaN17flkvcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "\n", "\n", "plt.figure()\n", "\n", "plt.xlabel('Dates en $[s]$')\n", "plt.ylabel('Tension en $[V]$')\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "12. Représenter le spectre de cette tension $e(t)$ en fréquence pour les 9 premières harmoniques." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'f0' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m17\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mf0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Fréquence en $[Hz]$'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Amplitude en $[V]$'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'f0' is not defined" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAN+klEQVR4nO3cYYjk9X3H8ffHu1hpY0zpbSDcndHSc8lhClpRQ6Bu0ZbTB3cPUsIdSGoQF9IaSg2CJcWIeZSGpBC41myp2ASiMXkQFnLpFVIHIeTkBBvxTk62F+vdJWBijHBINNZvH8zITLd3zt/b/+6e+3u/YGH+M7+d/fFl972z/9mZVBWSpI3vgvXegCRpbRh8SWqEwZekRhh8SWqEwZekRhh8SWrE1OAneTDJi0meOcvtSfLVJEtJnk5ydf/blCStVJdH+A8Bu97m9puBHaOPeeCfVr4tSVLfpga/qh4Hfvk2S/YAX6+hQ8D7k3ywrw1KkvqxuYf72AqcmDg+ObruZ8sXJpln+FcAF1100R9deumlPXz5d78333yTCy7w6RRwFpOcxZizGHvuued+UVUz5/K5fQS/s6paABYAZmdn69ixY2v55c9bg8GAubm59d7GecFZjDmLMWcxluS/z/Vz+/iVeQrYPnG8bXSdJOk80kfwF4FPjv5b53rglar6f6dzJEnra+opnSQPA3PAliQngc8D7wGoqgeAA8AtwBLwKvCp1dqsJOncTQ1+Ve2bcnsBf9XbjiRJq8KnvSWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEQZfkhph8CWpEZ2Cn2RXkmNJlpLcc4bbL03yWJKnkjyd5Jb+typJWompwU+yCdgP3AzsBPYl2bls2d8Bj1bVVcBe4B/73qgkaWW6PMK/FliqquNV9TrwCLBn2ZoC3je6fAnw0/62KEnqw+YOa7YCJyaOTwLXLVtzH/DvST4D/A5w05nuKMk8MA8wMzPDYDB4h9vdmE6fPu0sRpzFmLMYcxb96BL8LvYBD1XVl5N8FPhGkiur6s3JRVW1ACwAzM7O1tzcXE9f/t1tMBjgLIacxZizGHMW/ehySucUsH3ieNvoukm3A48CVNWPgIuALX1sUJLUjy7BPwzsSHJ5kgsZPim7uGzNC8CNAEk+zDD4P+9zo5KklZka/Kp6A7gTOAg8y/C/cY4kuT/J7tGyzwJ3JPkx8DBwW1XVam1akvTOdTqHX1UHgAPLrrt34vJR4GP9bk2S1CdfaStJjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktQIgy9JjTD4ktSITsFPsivJsSRLSe45y5pPJDma5EiSb/a7TUnSSm2etiDJJmA/8KfASeBwksWqOjqxZgfwt8DHqurlJB9YrQ1Lks5Nl0f41wJLVXW8ql4HHgH2LFtzB7C/ql4GqKoX+92mJGmlpj7CB7YCJyaOTwLXLVtzBUCSHwKbgPuq6t+W31GSeWAeYGZmhsFgcA5b3nhOnz7tLEacxZizGHMW/egS/K73swOYA7YBjyf5SFX9anJRVS0ACwCzs7M1NzfX05d/dxsMBjiLIWcx5izGnEU/upzSOQVsnzjeNrpu0klgsap+U1U/AZ5j+AtAknSe6BL8w8COJJcnuRDYCywuW/Ndho/uSbKF4Sme4/1tU5K0UlODX1VvAHcCB4FngUer6kiS+5PsHi07CLyU5CjwGHB3Vb20WpuWJL1znc7hV9UB4MCy6+6duFzAXaMPSdJ5yFfaSlIjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjDL4kNcLgS1IjOgU/ya4kx5IsJbnnbdZ9PEkluaa/LUqS+jA1+Ek2AfuBm4GdwL4kO8+w7mLgr4En+t6kJGnlujzCvxZYqqrjVfU68Aiw5wzrvgB8Efh1j/uTJPVkc4c1W4ETE8cngesmFyS5GtheVd9LcvfZ7ijJPDAPMDMzw2AweMcb3ohOnz7tLEacxZizGHMW/egS/LeV5ALgK8Bt09ZW1QKwADA7O1tzc3Mr/fIbwmAwwFkMOYsxZzHmLPrR5ZTOKWD7xPG20XVvuRi4EhgkeR64Hlj0iVtJOr90Cf5hYEeSy5NcCOwFFt+6sapeqaotVXVZVV0GHAJ2V9WTq7JjSdI5mRr8qnoDuBM4CDwLPFpVR5Lcn2T3am9QktSPTufwq+oAcGDZdfeeZe3cyrclSeqbr7SVpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqhMGXpEYYfElqRKfgJ9mV5FiSpST3nOH2u5IcTfJ0kh8k+VD/W5UkrcTU4CfZBOwHbgZ2AvuS7Fy27Cngmqr6Q+A7wN/3vVFJ0sp0eYR/LbBUVcer6nXgEWDP5IKqeqyqXh0dHgK29btNSdJKbe6wZitwYuL4JHDd26y/Hfj+mW5IMg/MA8zMzDAYDLrtcoM7ffq0sxhxFmPOYsxZ9KNL8DtLcitwDXDDmW6vqgVgAWB2drbm5ub6/PLvWoPBAGcx5CzGnMWYs+hHl+CfArZPHG8bXfd/JLkJ+BxwQ1W91s/2JEl96XIO/zCwI8nlSS4E9gKLkwuSXAV8DdhdVS/2v01J0kpNDX5VvQHcCRwEngUeraojSe5Psnu07EvAe4FvJ/nPJItnuTtJ0jrpdA6/qg4AB5Zdd+/E5Zt63pckqWe+0laSGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGmHwJakRBl+SGtEp+El2JTmWZCnJPWe4/beSfGt0+xNJLut9p5KkFZka/CSbgP3AzcBOYF+SncuW3Q68XFV/APwD8MW+NypJWpkuj/CvBZaq6nhVvQ48AuxZtmYP8K+jy98BbkyS/rYpSVqpzR3WbAVOTByfBK4725qqeiPJK8DvAb+YXJRkHpgfHb6W5Jlz2fQGtIVls2qYsxhzFmPOYmz2XD+xS/B7U1ULwAJAkier6pq1/PrnK2cx5izGnMWYsxhL8uS5fm6XUzqngO0Tx9tG151xTZLNwCXAS+e6KUlS/7oE/zCwI8nlSS4E9gKLy9YsAn8xuvznwH9UVfW3TUnSSk09pTM6J38ncBDYBDxYVUeS3A88WVWLwL8A30iyBPyS4S+FaRZWsO+NxlmMOYsxZzHmLMbOeRbxgbgktcFX2kpSIwy+JDVi1YPv2zKMdZjFXUmOJnk6yQ+SfGg99rkWps1iYt3Hk1SSDfsveV1mkeQTo++NI0m+udZ7XCsdfkYuTfJYkqdGPye3rMc+V1uSB5O8eLbXKmXoq6M5PZ3k6k53XFWr9sHwSd7/An4fuBD4MbBz2Zq/BB4YXd4LfGs197ReHx1n8SfAb48uf7rlWYzWXQw8DhwCrlnvfa/j98UO4Cngd0fHH1jvfa/jLBaAT48u7wSeX+99r9Is/hi4GnjmLLffAnwfCHA98ESX+13tR/i+LcPY1FlU1WNV9ero8BDD1zxsRF2+LwC+wPB9mX69lptbY11mcQewv6peBqiqF9d4j2ulyywKeN/o8iXAT9dwf2umqh5n+B+PZ7MH+HoNHQLen+SD0+53tYN/prdl2Hq2NVX1BvDW2zJsNF1mMel2hr/BN6Kpsxj9ibq9qr63lhtbB12+L64ArkjywySHkuxas92trS6zuA+4NclJ4ADwmbXZ2nnnnfYEWOO3VlA3SW4FrgFuWO+9rIckFwBfAW5b562cLzYzPK0zx/CvvseTfKSqfrWem1on+4CHqurLST7K8PU/V1bVm+u9sXeD1X6E79syjHWZBUluAj4H7K6q19Zob2tt2iwuBq4EBkmeZ3iOcnGDPnHb5fviJLBYVb+pqp8AzzH8BbDRdJnF7cCjAFX1I+Aihm+s1ppOPVlutYPv2zKMTZ1FkquArzGM/UY9TwtTZlFVr1TVlqq6rKouY/h8xu6qOuc3jTqPdfkZ+S7DR/ck2cLwFM/xNdzjWukyixeAGwGSfJhh8H++prs8PywCnxz9t871wCtV9bNpn7Sqp3Rq9d6W4V2n4yy+BLwX+PboeesXqmr3um16lXScRRM6zuIg8GdJjgL/A9xdVRvur+COs/gs8M9J/obhE7i3bcQHiEkeZvhLfsvo+YrPA+8BqKoHGD5/cQuwBLwKfKrT/W7AWUmSzsBX2kpSIwy+JDXC4EtSIwy+JDXC4EtSIwy+JDXC4EtSI/4XfcPuNJf8SiMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "\n", "\n", "plt.figure()\n", "\n", "plt.grid(True)\n", "plt.xlim(0,17*f0)\n", "plt.xlabel('Fréquence en $[Hz]$')\n", "plt.ylabel('Amplitude en $[V]$')\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "13. En utilisant les listes des harmoniques que vous venez de créer, écrire une routine python permettant de mettre en évidance l'effet du filtre passe-bas précédent sur la tension créneau étudiée. " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "\n", "plt.figure()\n", "\n", "\n", "plt.show()\n", "plt.close()\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "14. Par modification d'un paramètre, montrer qu'à \"haute-fréquence\" le filtre passe-bas se comporte comme un intégrateur. Représenter alors le spectre de la tension de sortie. " ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "\n", "plt.figure()\n", "\n", "\n", "plt.show()\n", "plt.close()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### B- Utilisation de l'équation différentielle.\n", "\n", "L'étude précédente de la fonction de transfert peut être menée, comme précédemment, à partir de l'équation différentielle. Pour cela il suffit d'utiliser la fonction $e(t)$ définie par synthèse spectrale." ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "\n", "plt.figure()\n", "\n", "\n", "plt.show()\n", "plt.close()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }